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I. Synopsis

As recommended in the brochure, "Administration of U.S. Air Force

Grants and Cooperative Agreements for Basic Research," this report

provides, in a single document, a permanent record of the progress and

significant accomplishments achieved in the performance of the research

effort. This first section contains summaries of research background,

research objectives, status of research, publications and professional

personnel associated with the research effort. Sections II, III, IV

and V are technical papers resulting from the research effort and

Section VI is a Master of Science thesis, supervised by the principal

investigator, which contains mathematical details and several computer

codes related to the four technical papers contained in this report.

* • A. Background

" The research results reported here are direct extensions of earlier

research conducted by the principal investigator under the auspices of

the 1979 USAF-SCEEE Summer Faculty Research Program sponsored by AFOSR

, * er contract No. F49620-79-0038. The final report summarizing the

- summer research effort, dated 17 August 1979 and authored by the

principal investigatcr,,. e% tit1#Q "Aaip. ipi -Processing for

Array Antennas." That1 werch a9,.'pe adfde 6 &i&1hd Electronics

Systems Division/Hanscom Air Foroieat -0 ddorlb6ration with

USAF Research Colleague, Dr. DW?&VM B..fiWd ?ctt 4 fiDirector,

Deputy for Development Plans, ESD-XR, (617)-271-3832).
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B. Objectives

Virtually all research and development in the area of adaptive

arrays has dealt with signal-to-noise ratio improvement by minimization

of directional interference and ambient noise using adaptive signal

processing. Interference of this nature is not correlated with the

desired signal and, as such, can be called "signal-uncorrelated"

interference. Another equally important mechanism of signal corruption

is the linear distortion of desired signals caused by reflections,

scattering, and multipath. In wideband digital communication systems,

for example, this introduces intersymbol interference, detection

errors and, consequently, significant degradation in performance. Each

array element or each array beam is connected to an adjustable filter

or equalizer (a transversal filter or tapped delay line) and each

individual filter must be adjusted in a systematic way to minimize

signal-correlated interference. The research effort reported here is

concerned with the specific problem of equalizer adjustment algorithms

and their performance. The equalization problem is formulated in the

time domain as an integral equation of convolution which is solved Aoession For

in the minimax sense using the Remez algorithm. The discrete-time NTIS GRA&I
DTIC TAB

case is also considered and solved via the Ascent algorithm. Unannounced
Justifieatle_.

Least-square-error and envelope-constrained algorithms also are
By

included. Distributionf
Availability C

C. Status of Research 1AvM1. wvA
Dist i special

The fundamental research problem is equalizer design in the time

domain. The minimax (Chebyshev) error criterion was chosen so that
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equalization errors would be both minimized and bounded in the time-

domain. Since frequency-domain techniques are not used, hardware and

software complexity and cost may be reduced and filter adjustment

speeds increased. The studies reported here indicate that minimax

time-domain design of an equalizer is both reasonab'i and practical.

Experimental results from computer-aided designs of minimax equalizers

illustrate several aspects of the performance capabilities and compu-

tational sensitivities of the Remez algorithm. Of particular interest

are the trades between filter length, total computation time, and

accuracy. Several representative examples are given. Equations

describing all filter adjustment algorithms are included. Computer

codes for the Remez algorithm and Ascent algorithm are listed.

D. Technical Publications Related to Research

1. D. Preis and C. Bunks, "Minimax Time-Domain Deconvolution
for Transversal Filter Equalizers," ICASSP-80 Proceedings,
pp. 943-946, IEEE International Conference on Acoustics,
Speech and Signal Processing, Denver, Colorado, April 1980

2. D. Preis, and C. Bunks, "Chebyshev Time-Domain Deconvolution
for Transversal Filter Equalizers," to appear in Electronics
Letters, December 1980

3. C. Bunks, "Minimax Equalization for Transversal Filters,"
Master of Science Thesis, Tufts University, 101 pages,
June 1980

4. D. Preis and C. Bunks, "Minimax Time-Domain Deconvolution
for Transversal-Filter Equalizers, presented at the IEEE
International Conference on Acoustics, Speech and Signal
Processing, Paper DSP 11.1, Fairmont Hotel, Denver,
Colorado, April 1980

5. D. Preis, "Minimax Equalizers: Performance and Adjustment
Algorithms," presented at the 1980 L'Aquila Workshop on
Digital Signal Processing, sponsored by IEEE Acoustics,
Speech and Signal Processing Society, L'Aquila, Italy,
September 1980
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I

6. D. Preis and C. Bunks, "Computational and Performance Aspects
of Minimax Equalizers," accepted for presentation at IEEE
International Conference on Acoustics, Speech and Signal
Processing, Sheraton-Atlanta Hotel, Atlanta, Georgia, March 1981

7. D. Preis and C. Bunks, "Three Algorithms for the Design of
Transversal-Filter Equalizers," submitted for presentation at
IEEE International Symposium on Circuits and Systems, Chicago,
Illinois, April 1981

E. Professional Personnel

Biographical Sketch of Principal Investigator. Douglas Preis

received the B.S.E.E. degree in 1964 and M.S.E.E. degree in 1966, both

from the University of Santa Clara, CA. He was a NASA Fellow at Utah

State University, Logan, where he received the Ph.D. degree in 1969.

He joined the research faculty of Harvard University, Cambridge, MA,

in 1970 where he was Post-Doctoral Research Fellow in the Division of

Engineering and Applied Physics at the Gordon McKay laboratory until

1978. In 1978, he joined the faculty of Tufts University, Medford, MA,

as Assistant Professor of Electrical Engineering. Dr. Preis has

published or presented about thirty-five original technical papers and

reports in the electrical engineering field. He received the Audio

Engineering Society Publications Award for his paper, "Linear

Distortion," which was published in the Journal of Audio Engineering

Society in 1976. Dr. Preis is a member of Sigma Xi, Tau Beta Pi. He

is a member of the Review Board of the Journal of the Audio

Engineering Society and an Associate Editor of the IEEE Transactions

on Acoustics, Speech, and Signal Processing.

Biographical Sketch of Research Assistant. Carey Bunks

simultaneously received the B.S. degree summa cum laude and M.S.

degree from Tufts University both in electrical engineering in June 1980.
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He received the Amos Emerson Dolbear Scholarship and the Victor Prather

Prize for demonstrated excellence in scientific research while at Tufts.'

He presented a technical paper at ICASSP-80 in Denver and is co-author

of four other technical papers. He is currently pursuing the Ph.D.

degree in electrical engineering at HIT. Mr. Bunks is a member of the

Tau Beta Pi and Eta Kappa Nu.
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MINIMAX TIME-DOMAIN DECONVOLUTION

FOR TRANSVERSAL FILTER EQUALIZERS

C. Bunks and D. Preis

Tufts University

Department of Electrical Engineering
Medford, Massachusetts 02155

ABSTRACT TIME-DOMAIN DECONVOLUTION

The subject of this paper is the design of an The overall impulse response of a linear
optimum transversal filter for time-domain system in cascade with an equalizing filter is
equalization of a linear, time-invariant system. determined by convolution in the time domain.
Given advance specification, in the time domain, Assuming that the system to be equalized is
of the unequalized system response and the desired causal with impulse response h(t), and that there
equalized response, a numerical deconvolucion is a particular desired response g(t), then the
is performed to determine the set of filter tap filter's impulse response f(t) must satisfy,
weights which optimally satisfies the continuous- t
time, convolutional integral equation in theJ f(x)h(t-x)dx = g(t). (1)
minimax or Chebyshev sense. This solution is 0 f
computed using the second algorithm of Remez. Since the unknown filter response appears under
Numerical examples are provided which illustrate the integral sign, (1) is an integral equation
the efficacy of minimax deconvolution. A computer for f(t). The solution of (1) requires that an
program flow chart is included, inverse convolution or deconvolution be performed

to find f(t) when h(t) and g(t) are specified.

INTRODUCTION Given a transversal filter with N tap weights,
assume that the filter's finite-duration impulse

Deconvolution arises in practical engi- response can be represented by,

neering problems an diverse as time-domain N

equalization, instrumentation and measurement, f(t) f =(
system identification, ultrasonic diagnostics, (
geophysical exploration, and imaging. Convolution n - I
is itself an integral operation whereas deconvolu-
tion, or the inverse of convolution, requires that where fn represents the value of the n-th tap
an integral equation be solved either directly or weight, 6 is the unit impulse function, and T is
Indirectly. In most linear signal processing the time delay between the equally-spaced taps.
applications, deconvolution is accomplished (An alternative representation for f(t) is a set
numerically and approximately using either Itera- of N contiguous rectangular pulses with ampli-
tive techniques [I) or discrete Fourier transform tudes fn and width T. The chosen representation
methods 123. When exact solutions do not exist, simplifies the following development.)
the usual procedure is to seek an approximate Substituting (2) into integral equation (1) yields
solution having minimum square error (3]. Large the following continuous-time representation for
errors as well as non-physical results sometimes g(t),
associated with this kind of solution can be N
suppressed by imposing suitable constraints when f nh(t-nT - g(t). (3)
deconvolving (1]. (41. An alternative approach E n
is aanimax or Chebyshev approximate solution [5]
wherein maximum Individual errors are minimized This result implies that g(t) can be represented
rather than the cumulative square error. In this exactly by a superposition of N weighted and
report, time-domain equalization of a continuous- time-shifted versions of h(t). Depending on
time system with an N tap transversal filter is both h(t) and the choice of g(t), it may not be
considered as a deconvolution problem. The possible to satisfy (3) exactly. In such cases,
convolutional integral equation is solved in the the solution to this problem requires finding a
Chebyshev or minimex sense using the second set of N tap weights fn which satisfies (3)
algorithm of Remez I5]. Maximum deconvolution approximately. For any specific instant in time tm
errors are controlled by the number of taps and within the domain of definition of g(t), (3) will
minimized uniformly. yield the following linear equation with the N tap

weights as unknowns,

943
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f h(tm-nT) - g(tm). (4) r(t) -g(tM) - ' fnh(tm-nT),
n*ln-i

m n i, 2, ... n. (6)

If M distinct instants in time are 
chosen, then a

system of M linear equations in N unknowns is Next, the objective is to minimize the maximum
generated which takes the form, value of the magnitude of r(tm) for n - 1, 2, ...

N by appropriate adjustment of the N tap weights fn"
The domain of definition of a continuous function

fnh(tm-nT) =g(tm), such as g(t) is an interval containing an infinite
n number of points. This fact implies that (3) can

be viewed as an overspecified system of M linear
m - 1, 2, ... M. (5) equations in N unknowns in the limit as M .

Thus, there is a corresponding infinite number of
Since it may not be possible to solve (3) exactly, error equations, as specified in (6), which define
a systematic method will be developed to find an an error function r(t) of the form,
approximate solution. This is accomplished first N
by considering solutions to (5). r(t) - g(t) - E fnh(t-nT) (7)

Equation (5) suggests three possibilities: n = I
H < N, M - N, and M > N. For M < N, there are
more unknowns than equations so that the system From a different viewpoint, the location of each
of linear equations is underspecified and, con- tm (for m - 1, 2, ... M and M> N) remains
sequently, an infinite number of solutions exists, unspecified yet it is required that the magnitude
For M - N, the number of equations equals the of each corresponding individual error r(tm) be
number of unknowns and a unique solution exists if minimized. So, it is necessary to examine r(tm)
these equations are linearly independent. This for all values of tm within the domain of defini-
approximate solution, known as coLZocation [6] or tion of g(t). Specifically, the maximum magnitude
point matcling, only satisfies (3) at each of the of r(t) must be minimized. This can be accom-
chosen N points. A different selection of N points plished by invoking the characterization theorem
generally will yield a different solution. It is which predicts that the maximum value of each of
clear in this situation that the tap weights fn the M >N error equations is minimized at the
depend upon the choice of the N values of t intersection of a particular subset of N + 1 of
Furthermore, even though the solution to (3 these M equations [5]. Therefore, finding the
matches exactly at the selected N points ti, the Chebyshev minimum of the set of error equations
approximation error may be considerable between reduces to determining the appropriate subset of
these points. For M > N, the system of linear N + 1 error equations, or, equivalently, finding
equations is overspecified because there are more the best set of N + 1 points in time (viz., each
equations than unknowns. In such an overspecitied tm for m = 1, Z, ... N + 1). A major difficulty
system no exact solution exists which simulta- here is that for H infinite, an infinite number
neously satisfies each of the M equations. Here of subsets each consisting of N + 1 points must be
the only recourse is to find the "best" approximate examined. A systematic search for the subset of
solution to (5). A popular method for solving (5) N + 1 points, from the infinite set of points on
approximately, which also ensures a minimum total the domain of definition of g(t), is known as the
approximation error, is the method of teast squares second algorithm of Remez [5]. It is a powerful
(6] or minimum-square-error technique. In this iterative technique which converges to the set of
method the sum of the square of each of the N + 1 points for which error function r(t) is
individual errors between the approximation and minimized in the Chebyshev sense. The N tap
the desired solution of the M equations is weights thereby obtained yield the requisite mini-
minimized. However, in spite of the fact that max solution to (3). This entire procedure is
the cumulative error for the total system of defined as minimaxzdeconvolution. It is the best
M equations is minimized, the error for any way to minimize deconvolution errors uniformly.
individual equation is unconstrained and may be
very "rge indeed. Therefore, it is desirable to COMPUTED EXAMPLES
seek an approximate solution which simultaneously
and uniformly minimizes the maximum error from each Figure 1 illustrates equalization of a
of the M individual equations. The Chebyshev Gaussian to approximate a sinc function on the
solution to an overspecified system of linear time interval [-3w, 37] first using a 6 tap
equations satisfies these requirements I5]. (T - v) then an 8 tap (T = 31/4) transversal

filter. In this example, h(t) = 0.337exp(-t2/27.6)
In order to formulate the Chebyshev solution and g(t) - (sin t)/t. Maximum value of the error

to (5), it is necessary to define an error equation magnitude Ir(t)! is 0.21 for 6 taps and is reduced
associated with each of the M linear equations (by a factor of ten) to 0.021 for 8 taps.
having t'e general form,

944
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g~t-(intIth(t) .337 x ~ )-24t1 hit) -cos(t)

0 4 4

-3w atime- 3w - tirne+ W

g N -6 taps g- ~ N- 8 taps

T/ T- T - /

g N 7 ' 
tap

g - taps N - 12 taps

=31/4 T - iw16

f J*h
A- 8

0.- f *h

0

21___________ .26

r6 12

errorerr

Figure 1. )Iinimax-deconvolution design of 6 tap Figure 2. Klnimax-deconvolution design of a tap
(f6 )and 8 tap (f8) transversal filters for (f 8 ) and 12 tap (f ) transversal filters for
equalzaion of Gaussian system function h(t) to equalization of ralied-cosine system function h(t)
approximate mine function g(t). Lowest pair of to approximate triangular function g(t). Lowest

curves shows respective approximation error pair of curves shows respective approximationierror
functions r 6 and r.. functions r a and r 1 2 :
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filter. For this 2second example, h(t) - 0.5 x(1 + co t) - coo2(t/2); g(t) - 2 - 41tl/w for

Itl < n/2 and g(t) - 0 for Iti > r/2. Maximum
INPUT DATA value of the error magnitude jr(t) is 0.263 for

8 taps and is reduced to 0.159 for 12 taps. On a
percentage basis, these errors are 13% and 8%,

g(t) - equalized response respectively, because the peak value of g(t) is 2.

N - number of taps
r - tp spcingCOMPUTER PROGRAMT - tap spacing

[a,b] - solution interval The computer program (see Figure 3) first
selects N + 1 evenly-spaced points t in the
solution interval [a,b]. Each of these points

Select N + I equally-spaced determines one linear equation with the N tapS weights as unknowns. The minimax solution to this
points tm in interval [,b]. overspecified system of N + 1 equations in N

unknowns is computed. Next, the resulting
continuous-time error function r(t) is evaluated.
If the maxima of Ir(t)I do not occur at the chosen

Compute minimax solution to values of tm then the continuous-time minimax
solution has not been found. The next iteration

system of N + 1 equations corresponding begins by selecting new points tm in the interval
to choice of points t- In-previous step. [a,b] which correspond to the N + I largest values

m of Ir(t)[. The minimax solution to this new
overspecified system is computed and its error
function r(t) evaluated. The process "s repeated

Evaluate continuous-time error until IrCt)I is bounded by Ir(tm)l. When this

function :(t) - g(t) - fh(tnT). occurs, the appropriate subset of N + 1 points t.
funcionr~t)htnT is known and the minimax solution to its cor-

responding overspecified system of N + I linear
equations in N unknowns yields that set of N tap
weights which satisfies the convolutional integral
equation in the minimax sense. In summary, the

rE t Mrt_) >YES Remez algorithm is a systematic, iterative
procedure for finding a unique set of N + 1 points
tm in the interval exchanging one set of N + 1
points tm for another until each point corresponds
to an extreme value of the error function r(t).

Choose new set of N + REFERENCES

points tm in [a,b] qarresponding [] R.M. Mersereau and R.W. Schafer, "Comparative
to maximum values of Ir (t)l Study of Iterative Deconvolution Algorithms,"
t i l rIEEE Conference on AcouStics, Speech, and

I Signal Processing, pp. 192-194, April, 1978.

OUTPUT DATA [2] B.R. Hunt, "Biased Estimation of Nonpara-metric Identification of Linear Systems,"
N tap weights f Math. Biosci., vol. 10, pp. 215-237, 1971.

n
Maximum error [3] D. Preis, "Least-Squares Time-Domain Decon-

Plots of- h(t), g(t), f(t)*h(t), r(t) volution for Transversal-Filter Equalizers,"
PElectron Lett., vol. 13, pp. 356-357,

June, 1977.

(4] D. Preis, "Envelope-Constrained Time-rzmain
STOP Deconvolution for Transversal-Filter Equal-

izers," Electron. Lett., vol. 14, pp. 37-38,
Jan. 1978.

Figure 3. Flow Chart for Minimax Deconvolution [5] E.W. Cheney, Introductton to Approximation
Theory. New York: McGraw-Hill, 1966,
Chapter 3.

[6] F.B. Hildebrand, Methods of Applied Mathe-
matica. New Jersey: Prentice Hall, 1965,

Figure 2 shows a raised-cosine pulse Chapter 3.

equalized to approximate a narrow triangular pulse
on the- time interval [-W,ij using an 8 tap
(T n /4) then a 12 tap (T - w/6) transversal
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MINIMAX EQUALIZERS: PERFORMANCE AND

ADJUSTMENT ALGORITHMS

D. Preis

Tufts University
Department of Electrical Engineering
Medford, Massachusetts 02138 USA

- Abstract -

Minimax time-domain deconvolution to determine the N tap weights

of a transversal filter equalizer (FIR) is accomplished iteratively

using the Remez algorithm. This minimax design can be converted to a

recursive (IIR) filter possibly having greater error but only half

the number of delay elements T. Results of computations for three

different examples illustrate the dependence of equalization error e

on the number of taps N and width of solution interval W.

Computation time and convergence are related to N. Representative

FIR and fIR designs are compared.

Presented at 1980 L'Aquila Workshop on Digital Signal Processing,

sponsored by IEEE ASSP Society, L'Aquila, Italy, September 1980
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INTRODUCTION

The subject of this contribution is the automatic design of an

optimum transversal filter for time-domain equalization of a linear

system. The equalization problem is formulated in the time domain as

an integral equation of convolution. Frequency-domain techniques are

not used. Given advance specification (or an estimate), in the time

domain, of the unequalized system response and the desired equalized

response, a numerical deconvolution is performed to determine the set

of filter tap weights which optimally satisfies the convolutional

integral equation in the minimax or Chebyshev sense. The transversal-

filter equalizer is assumed to be a tapped delay line having either a

finite-duration impulse response or an infinite-duration impulse

response while the linear system to be equalized is continuous-time.

The filter tap weights are computed interatively using the second

algorithm of Remez. A major advantage of minimax time-domain deconvolu-

tion for equalizer design is that the error magnitude is both minimized

and bounded. The question of solution feasibility, which arises in

envelope-constrained deconvolution, is avoided. Also, the problem of

large, unconstrained individual errors, which often occurs with

least-square-error approximate solutions or discrete-Fourier-transform

solutions, is eliminated.

Specific aspects of the equalization problem also considered here

include an intercomparison of the performance of both recursive and

non-resursive minimax transversal-filter equalizers in terms of

equalization accuracy and filter length.

111-2-I!



Prospective applications of this research include: high-data-

rate communication through time-varying dispersive channels, reduction

of intersymbol interference, system identification and modeling, minimax

inverse filtering, multichannel filtering, and sensor array equalization.

Potential advantages of minimax time-domain equalization are: a reduc-

tion of hardware and software complexity and costs normally associated

with time-domain to frequency-domain and frequency-domain to time-domain

transformations, increased processing speed, uniform control and mini-

mization of deconvolution errors in the time domain, and the possibility

of reduced filter complexity.

Computed results for about 50 FIR equalizer designs are summarized

in graphical forms which relate accuracy, convergence, and computation

time to filter length. Also illustrated are sensitivities of equaliza-

tion error to solution-interval width. These minimax designs were

computed using the Remez algorithm [1].

EXAMPLES AND RESULTS

Figure I summarizes three different time-domain equalizer design

problems. In the left column of this figure are the key symbols which

are used in subsequent figures to identify each of these three

examples. The first case is equalization of a Gaussian to a Sinc

function, the second, a raised cosine to a triangular function and

the third, a raised cosine to a rectangular function. The filter or

equalizer impulse response is f(t), the system response h(t), and

the overall response g(t). The minimax equalizer is a tapped delay

line or transversal filter having finite-duration impulse response (FIR).

111-3



In some examples to follow infinite duration impulse response (IRR)

filters also will be considered. Note that h(t) and g(t) are continuous-

time functions while the filter f(t) is discrete-time device.

Two equalizer canonical forms are shown in Figure 2. The letter

T indicates a time delay of T seconds. Lower case letters f, a, and b

designate filter coefficients or tap weights.

Figure 3 illustrates the dependence of equalization accuracy on the

number of taps N for the FIR designs. The number of taps equals the

number of delay elements minus one. Since the filter output is a weighted

sum of time delayed versions of the input, the symmetry of the taps

about t = 0 is important. For N odd equalization accuracy is better than

N even because the middle tap is centrally located at t - 0. Considering

N even or N odd separately it is seen that, for fixed solution interval

width W, the error decreases the equalization accuracy improves as the

number of taps N is increased. The error is computed as the ratio of

maximum deviation of equalized response from g(t) to maximum value of

g(t) and this is expressed in percent. Note that for the third example

(square symbol) the error can not be less than 50% because (at best)

the equalized response will pass through the vertical sides of the

rectangle at their midpoints.

In Figure 4 minimax equalization error is plotted for the three

test cases where the number of taps is fixed at N - 8 and the width

of the solution interval W is varied. It seems intuitive that the

error should increase as the solution interval is made wider,

however, this is not necessarily true as can be observed for the

first example (round dots). Also, it is interesting to note that if
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the solution interval is chosen to be wider than the sum of the

durations of h(t) and f(t) then no change in error can be expected

since the convolution is zero for Iti large.

Convergence of the Remez algorithm depends on several factors.

Figure 5 illustrates convergence as a function of the number of tap

weights N. It is seen that filter symmetry (N odd or even) is influential.

On the average, the number of iterations required for convergence is

approximately equal to the number of taps N.

Figure 6 shows total computation time in seconds as a function of

the number of tap weights N. With one exception, computation time

increases with N. Those filters offering higher accuracy (N odd)

require proportionally more computation time.

Figure 7 combines the data of Figures 5 and 6 to illustrate

the average time per iteration as a function of N. Note that the

increased time for the first example (round dots) is due to the compara-

tively more complicated form of the mathematical expression for g(t)

and h(t).

Figure 8 shows the trade-off between filter accuracy and invested

computation time. Equalization error can be reduced significantly

by lengthening the filter. For short filters, computation time and

accuracy are related linearly.

Figure 9 is a table of two sets of computed tap weights for

nonrecursive (FIR) and recursive (IIR) designs when N - 7, T = w/7,

for W - 6w, and for W - 12w. Tap weights for the hIR case were

computed from the FIR values using an algorithm (21 which forces the

initial N values of the impulse response of the IIR filter to equal

.ha .:responding values of the FIR filter.
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I Figure 10 compares FIR and IIR equalized responses with g(t)

The maximum FIR error in the solution interval W - 6?r is 1.52% for

N 7.

Figure 11 illustrates the large errors (side lobes) outside the

solution interval W = 6w for the designs of Figure 10. These sidelobes

can be reduced by increasing W as shown in Figure 12 where the maximum

error is 13.3%.

REFERENCES

[1] D. Preis and C. Bunks, "Minimax Time-Domain Deconvolution for
Transversal Filter Equalizers," IEEE Conference Record, 1980
ICASSP, pp. 943-946, April 1980.

[21 C. S. Burrus and T. W. Parks, "Time Domain Design of Recursive
Digital Filters," IEEE Trans. AU-18 pp. 137-141, June 1970.
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CHEBYSHEV TIME-DOMAIN

DECONVOLUTION FOR TRANSVERSAL-

FILTER EQUALIZERS

D. Preis and C. Bunks*

- Abstract -

Design equations are presented for computing the N tap weights

of a transversal filter equalizer. The associated time-domain

deconvolution is performed subject to the Chebyshev (minimax)

error criterion. Individual or pointwise deconvolution errors

are controlled and minimized uniformly. This method offers an

alternative to least-square-error or discrete-Fourier-transform

designs wherein only the cumulative deconvolution error is

minimized. Computationally, the Ascent algorithm is used which

requires inversion of two N + I by N + 1 matrices followed by a

finite number of elementary algebraic exchange operations. The

equations needed to implement this algorithm are presented in a

form suitable for digital computation.

To appear in Electronics Letters

*The authors are with the Department of Electrical Engineering,

Tufts University, Medford, Massachusetts 02155 USA.
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When a transversal filter (tapped delay line) is used as an

equalizer for a discrete-time system, it is necessary to compute the

N tap weights of the filter by deconvolution. Because the operation

of discrete-time convolution generates more equations than unknowns,

deconvolution generally will be inexact and, consequently, equalization

will be approximate. Any approximate solution to this equalizer design

problem will depend on the error criterion and constraints imposed when

deconvolving. In two previous communications1'2 design equations were

given for least-square-error and envelope-constrained transversal-

filter equalizers. The present design procedure offers an alternative

wherein the maximum deconvolution errors are minimized uniformly.

This is known as the Chebyshev (or minimax) approximate solution.

Consider the discrete-time description of equalization given by

the convolution summation,

m

g(m) = h (m-n+l) f(n), (1)
nL1

where g is a specified M element sequence representing the desired

equalized impulse response, f is an N element sequence composed of

the unknown transversal-filter tap weights, and h is a known M-N+l

element sequence which represents the impulse response of the linear,

time-invariant system requiring equalization. It is assumed, for

convenience, that the time interval between adjacent sequence elements

is unity. In all practical cases, the sequence h has more than one

element so that M>N and eqn. 1 generates an overspecified system

of M linear equations in N unknowns. Since an overspecified system

such as this may not have an exact solution, it is appropriate to

consider approximate solutions. A useful measure of the approximation

error (or equalization error) corresponding to a specific set of N

tap weights f is the M element error sequence r defined by
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m

r(m) = g(m) - I h(m-n+l) f(n) (2)
n=1

Comparison of eqn. 2 with eqn. 1 will indicate that the closer each

numerical value r(m) is to zero, the better the approximate solution

becomes. If, for example, r(m) - 0 for m = 1, 2, 3, ... M then the

N tap weights satisfy eqn. I exactly.

The intent here is to outline a procedure for computing those

N tap weights f which both minimize and bound all the elements of

the error sequence r , that is,

Ir(m) J<e , (3)

where e is the smallest possible non-negative number. This solution

is known as the Chebyshev (or minimum-maximum-error) approximate

solution. There are N+1 unknowns for a given equalizer design, namely,

the N tap weights and c . Intuitiveiy, these unknown quantities can be

found by solving an appropriate set of N+l linear equations in N+l

unknowns. It turns out that this set is, in fact, a subset of the

M equations specified by eqn. 1. Assuming E>0 the Chebyshev solution

to these N+I equations is characterized by the following two

properties. First,

r(mi) = o(mi)c (4)

for N+1 of the M elements of the error seauence given by eqn. ?

where a(m1 ) equals +1 or -1 and the subscript i = 1, 2, 3, ... N+l

denotes N+l specific integer values of m from the total set of M

values. Second, the remaining M - (N+I) elements of r will satisfy

eqn. 3. One systematic search for the appropriate set of N+1 linear

equations and the subsequent solution for the N tap weights f and

maximum error £ is known as the Ascent algorithm.3 The equations

required to implement this algorithm follow.

IV-3



-3-

Initiate the search by selecting any subset of N+l of the M

equations given by eqn. 2. Using eqn. 4 write the result in the

following matrix form,

g(m I ) o(m I ) h(mI ) h(ml-l) . . . h(ml-N+l) C

g(m2 ) a(m2 ) h(m2 ) h(m2-1) . . . h(m2 -N+l) f(l)

g(m3 ) a(m3 ) h(m3 ) h(m3-l) . . . h(m3-N+l) f(2) (

where the subscripts associated with the index m denote those specific

N+l integer values of m selected from the M available values. Each

of the N+l values of a appearing in eqn. 5 is either +1 or -1 and is

specified by the relation

a(mi) = sgn [O(mi)], (6)

where the numerical value of each of the N+l elements of 0 is found

by inverting the following matrix equation,

1 1 1 . . . 1 e(m 1 ) 1

h(m1 ) h(m2 ) h(m3 ) . . . h(mN+ I ) O(m2 ) 0

h(m 1-l) h(m 2 -1) h(m3 -1) . . . h(mN+l-l) O(m3 ) 0 (7)

Lh(m l'-N+l) h(m 2-N+l)h(m 3-N+ ) . . h(mN+ -N+l ).[ ( N+ ) _ 0

The existence of the Chebyshev solution requires that zero be contained

in the convex hull of the N+l vectors whose N components are the

elements of the N+l columns appearing below the top row of the square

matrix in eqn. 7. This condition is satisfied if a linear combination

of these N+l vectors can be found which yields the null (zero) vector

and if those N+1 scalars 0, used to form the linear combination, sum
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to unity. Equation 7 is a mathematical statement of these two

requirements. The algebraic sign of each of the N+l scalars e

determines whether the error e, associated with each linear equation

in eqn. 5, is positive or negative.

Write the solution to eqn. 5 in matrix form as,

c(0,0) c(0,1) . . . c(0,J) . . . c(0,N)- 9-(m ) - C

c(l.0) c(l,l) . . . c(l,j) . . . c(l,N) g(m2) ff(l)

• (8)

c(kO) c(k,1) . . .c(k,j) . . . c(k,N)=

c(N.0) c(N,I) . . . c(N,j) . . . c(N,N) (mN+l) -  f(N)

The matrix multiplication prescribed by eqn. 8 yields the initial set

of numerical values of the N tap weights f and error e . Insert

these computed tap weights in eqn. 2 and examine each element of the

error sequence r to verify that jr(m)l_<e for m = 1, 2, 3, .... M. If

this is true then eqn. 3 is satisfied and the Chebyshev solution has

been found. No further computations are necessary.

If eqn. 3 is not satisfied then the following iteratlive exchange

procedure is required. Select that specific integer mfp for which

jr(m) l is maximum and let

U= sgn [r(p)] (9)

Next, calculate the N+I elements of sequence a(i) defined by

N

a(j) - c(O,J) + I h(p-k+l) c (k,j) (10)
k--l

Now select the integer q so that

b(q) - pa(q)/c(O,q) (11)

is a maximum. Next replace the N+I element column c(k, q) in eqn. 8
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with c'(k,q) where

c'(k,q) = c(k,q)/a(q), (12)

and replace all other elements e(kj) in eqn. 8 for which j # q with

c'(k,j) where

c'(k,j) = c(k,j) - a(j)c'(k,q) (13)

Finally, replace g(q) with g(p) in eqn. 8. Recompute the error e,

and the sequences f and r using eqn. 8 and eqn. 2. As before,

verify that Ir(m) _ e for m - 1, 2, 3, ... M. If eqn. 3 is not

satisfied then repeat the foregoing exchange procedure by selecting

a new value of p and returning to eqn. 9.

Note that although M - (N+l) exchange operations are possible,

the Chebyshev solution usually is found with fewer iterations than

this. The maximum error P will increase (ascend) with each

successive iteration.

In certain applications, h and g are continuous-time functions

rather than finite sequences of sampled values as in eqn. 1. If this

is the case, then the Chebyshev solution can be found using the Remez

algorithm.3 Mathematical details and representative examples are

4

available elsewhere.
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THREE ALGORITHMS FOR THE DESIGN

OF TRANSVERSAL-FILTER EQUALIZERS

D. Preis C. Bunks
Tufts University Massachusetts Institute of Technology
Department of Electrical Engineering Department of Electrical Engineering
Medford, Massachusetts 02155 and Computer Science
(617) 628-5000 x287 Cambridge, Massachusetts 02139

- Abstract -

This report contains the equations needed to implement three

different equalizer design algorithms. The equations are presented

in matrix form and are suitable for digital computation. The first

design, which is based on the Chebyshev or minimax error criterion,

is accomplished using an iterative procedure known as the Ascent

algorithm. The second design is a direct, least-square minimization

of the cumulative equalization error by fast Toeplitz matrix

inversion. The third design technique attempts to enforce specific

constraints on the envelope of the equalized response. If an

envelope-constrained solution is feasible, then it can be found

iteratively beginning with the least-square-error solution.

Computationally, the least-square minimization is the fastest

while the envelope-constrained design is the slowest. The minimax

design offers the best error control.

Submitted for presentation at The 1981 International Symposium on

Circuits and Systems, Chicago, Illinois, April 27-29.

Suggested Session: Computer-Aided Design, Active Filters, or

Digital Filters
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1. Introduction. When a transversal filter (tapped delay line) is

used as an equalizer for a discrete-time system, it is necessary to

compute the N tap weights of the filter by deconvolution. Because

the operation of discrete-time convolution generates more equations

than unknowns, deconvolution generally will be inexact and, conse-

quently, equalization will be approximate. Approximate solutions to

this equalizer design problem depend on both the error criterion and

constraints imposed when deconvolving. This report presents three

different deconvolution algorithms to compute the N tap weights of

a transversal-filter equalizer: (1) minimax design, (2) least-

square-error design, and (3) envelope-constrained design.

2. Minimax Design. The basis for the minimax design is a uniform

minimization of maximum deconvolution errors. Computationally, the

Ascent algorithm is used to determine the N tap weights of the

filter and this requires inversion of two N+I by N+l matrices

followed by a finite number of elementary exchange operations.

Consider the discrete-time description of equalization given

by the convolutional summation.

m

g(m) = " h (m- n + 1) f(n), (l)

n= 1

m 1, 2, 3, . . . M

n 1, 2, 3, . . . N

where g is a specified M element sequence representing the desired

equalized impulse response, f is an N element sequence composed of

the unknown transversal-filter tap weights, and h is a known M - N + I

element sequence which represents the impulse response of the linear,
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time-invariant system requiring equalization. It is assumed, for

convenience, that the time interval between adjacent sequence elements

is unity. In all practical cases, the sequence h has more than one

element so that M > N and eqn. I generates an overspecified system

of M linear equations in N unknowns. Since an overspecified system

such as this may not have an exact solution, it is appropriate to

consider approximate solutions. A useful measure of the approximation

error (or equalization error) corresponding to a specific set of N

tap weights f is the M element error sequence r defined by

m

r(m) = g(m) - Z h (m - n + 1) f(n), (2)

n i m = , 2, 3, .

n 1, 2, 3, ... N

Comparison of eqn. 2 with eqn. I will indicate that the closer each

numerical value r(m) is to zero, the better the approximate solution

becomes. If, for example, r(m) 0 for m = 1, 2, 3, . . . M then

the N tap weights satisfy eqn. 1 exactly.

The intent here is to outline a procedure for computing those

N tap weights f which both minimize and bound all the elements of the

error sequence r , that is,

Jr(m)l< F-, (3)

m = 1, 2, 3, . . M

where e is the smallest possible non-negative number. This solution

is known as the Chebyshev (or minimum-maximum-error) approximate

solution. There are N + I unknowns for a given equalizer design,

namely, the N tap weights and r . Intuitively, these unknown quantities

can be found by solving an appropriate set of N + I linear equations in
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N + 1 unknowns. It turns out that this set is, in fact, a subset of

the M equations specified by eqn. 1. Assuming e > 0, the Chebyshev

solution to these N + I i,itions is characterized by the following

two properties. First,

r(mi) = 3(m (4)

for N + 1 of the M elements of the error sequence given by eqn. 2,

where a(mi) equals +1 or -1 and the subscript i = 1, 2, 3, N + 1

denotes N + 1 specific integer values of m from the total set of M

values. Second, the remaining M - (N + 1) elements of r will satisfy

eqn. 3. One systematic search for the appropriate set of N + 1 linear

equations and the subsequent solution for the N tap weights f and
1

maximum error e is known as the Ascent algorithm. The equations

required to implement this algorithm follow.

Initiate the search by selecting any subset of N + 1 of the M

equations given by eqn. 2. Using eqn. 4 write the result in the

following matrix form,

g(m1 ) U(mI) h(m1 ) h(ml-1) . . . h(ml-N+Il) 1
g(m2 ) G(m 2) h(m2 ) h(m2-1) . . . h(m2-N+l) f(1)

g(m3) G(m 3) h(m3 ) h(m3-1) . . . h(m3-N+l) f(2)

(5)

g(mN+l) (mN+l)h(mN+l) h(mN+l-I). . h(mN+l-N+l) f(N)

where the subscripts associated with the index m denote those specific

' + 1 integer values of m selected from the M available values.
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Each of the N + 1 values of o appearing in eqn. 5 is either +1 or -i

and is specified by the relation

cY(mi= sgn [O(m.)1 (6)

i = 1, 2, 3, . N + 1

where the numerical value of each of the N + 1 elements of 0 is found

by inverting the following matrix equation,

1 1 1 . . 1 8(m I ) 1

h(mI) h(m2) h(m3) . . . h(mN+) e(m 2) 0

h(m 1-l) h(m2-1) h(m3 -1) . . . h(m, 1 -l) 6(m 3 ) 0

- (7)

h (m -N+l) h (m2 -N+l) h (m3 -N+l) . . . h (mN+l-N+I) 0 (MN+l) 0

The existence of the Chebyshev solution requires that zero be contained

in the convex hull of the N + I vectors whose N components are the

elements of the N + 1 columns appearing below the top row of the square

matrix in eqn. 7. This condition is satisfied if a linear combination

of these N + 1 vectors can be found which yields the null (zero) vector

and if those N + 1 scalars 0, used to form the linear combination, sum

to unity. Equation 7 is a mathematical statement of these two

requirements. The algebraic sign of each of the N + 1 scalars 0

determines whether the error c, associated with each linear equation

in eqn. 5, is positive or negative.

Write the solution to eqn. 5 in matrix form as,
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c(O,O) C(O,1) . c(O,j) . . c(O,N) g(m)

c(l,O) c(l,l) . . . c(l,j) . c(l,N) g(m2) f(1)

c(k,O) c(k,l) . . c(k,j) . . . c(k,N) (8)

c(N,0) c(N,l) ... c(N,j) . . . c(N,N) g(MN+l) f(N)

The matrix multiplication prescribed by eqn. 8 yields the initial set

of numerical values of the N tap weights f and error c . Insert these

computed tap weights in eqn. 2 and examine each element of the error

sequence r to verify that Ir(m)j< e for m = 1, 2, 3, . . • M. If

this is true then eqn. 3 is satisfied and the Chebyshev solution has

been found. No further computations are necessary.

If eqn. 3 is not satisfied then the following iterative exchange

procedure is required. Select that specific integer m = p for which

[r(m)l is maximum and let

= sgn [r(p)] (9)

Next, calculate the N + 1 elements of sequence a(j) defined by

N

a(j) - jc(0,j) + E h(p - k + 1) c (k, J), (10)

k= I
j = 0, 1, 2, 3, . . N.

Now select the integer q so that
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b(q) ua(g) (11)

q =0, 1, 2, 3, •••N

is a maximum. Next replace the N + 1 element column c(k, q) in eqn. 8

with c'(k, q) where

c'(k,q) c(k, q) (12)
a(q)

k = 0, 1, 2, 3, . . N

and replace all other elements c(k, j) in eqn. 8 for which j # q with

c'(k, j) where

c'(k, J) = c(k, j) - a(j)c'(k, q), (13)

k = 0, 1, 2, 3, . . . N

j = 0, 1, 2, 3, • . N

(j q)

Finally, replace g(q) with g(p) in eqn. 8. Recompute the error C,

and the sequencesf and r using eqn. 8 and eqn. 2. As before, verify

that jr(m) < e for m = 1, 2, 3, . • . M. If eqn. 3 is not satisfied

then repeat the foregoing exchange procedure by selecting a new value

of p and returning to eqn. 9.

Note that although M - (N + 1) exchange operations are possible,

the Chebyshev solution usually is found with fewer iterations than

this. The maximum error e will increase (ascend) with each

successive iteration.

In certain applications, h and g are continuous-time functions

rather than finite sequences of sampled values as in eqn. 1. 11 this

is the case, then the Chebyshev solution can be found using the Remez

algorithm. Mathematical details and representative examples are

2
available elsewhere.
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3. Least-Square-Error Design. The least-square-error design is based

on minimization of sum of the squares of the M individual deconvolution

errors r(m) as defined in eqn. 2. Minimization of this cumulative

error is different from the minimax design which uniformly and

simultaneously minimizes each individual deconvolution error r(m).

Very efficient computation of the least-square-error solution is

possible using fast Toeplitz matrix inversion.

A matrix representation of the convolutional summation given in

eqn. 1 is

h(l) 0 .0 0 f(1) g(1)i

h (2) f(2) g(2) 1

0

h(N) h(l)

_ h(2) -- (.

h(2)

- j(14)

h(M- N)

0 0 . . .0 h(M - N + 1) f(N) g(M)

and cnis equation can be written c.

Hf g ()

where f and g now are understood to be column vectors. The elements

of H are known and g is specified. The unknown tap-weight vector

V-8



-9-

is f. Thus, eqn. 15 represents an overspecified system of M linear

equations in N unknowns, that is M > N. The least-square-error

solution f to eqn. 15 is3

f= Sg (16)

1
where S= (H' H ) H. The prime symbol denotes transpose.

Note that H1 H is an N x N symmetric Toeplitz matrix whose elements

are Tij = T i - j = Tk where

M-N+1-k

Tk = 1 h(n + k) h(n). (17)

n= 1

4 -1
A rapid inversion algorithm is available to compute (H H)

After this inverse is evaluated, the least-square-error tap weights

f are found using eqn. 16. The resultant mean-square error is

[H? - g] [H - g]/M, and it is this quantity that has been minimized.

However, the individual deconvolution errors r(m) are unconstrained.

These errors can be evaluated quantitatively by replacing f(n) with

f(n) in eqn. 2. If the least-square-error solution f yields

unacceptably large individual errors r(m), it may be possible to

reduce them using the envelope-constrained design procedure discussed

in the following section. With this algorithm somewhat larger mean-

larger individual deconvolution errors r(m).

The least-square-error solution f also can be found using discrete

Fourier transform methods. Computationally, these two different

methods are comparable. One requires matrix algebra and Toeplitz
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inversion while the other relies on the availability of FFT routines

and requires algebraic operations with complex numbers.

4. Envelope-Constrained Design. The envelope-constrained design

algorithm is an iterative procedure which begins with the least-

square-error design. The least-square-error tap weights f are then

systematically re-adjusted to the new values f in an attempt to satisfy

specific constraints imposed on the envelope of the equalized

response g(m).

Assume that each g(m) is bounded above by a(m) and below by b(m).

Next require that the envelope-constrained tap weights f satisfy

H (18)

where

b(m) < i(m) < a(m), (19)

m = 1, 2, 3, . . . M.

In this way, the equalized response g is constrained to lie within

the tolerance envelope prescribed by sequences a and b; and i is the

envelope-constrained approximation to g. If such a solution is

feasible then f can be found using the following iterative adjustment

5
procedure.

For the k-th iteration eqn. 15 is written as

H fk = gk' (20)

where gk is the k-th constrained response vector corresponding to

the k-th iteration of the tap weight vector fk' For k - 0, choose

the least-square-error solution f 0 - f  S g then compute g0 from

eqn. 20 as go M Hfo. The tap weight vector is adjusted or "stepped"

V-10
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using the relation

f =f +1-Af (21)
k + 1 k k'

k 0 0, 1, 2,

where Afk is given by

Af = SAgk  (22)

and where Agk itself depends on the following combination of the

errors

0 if b(m) < gk(m) < a(m)

Agk(m) = - [gk(m) - a(m)] if gk(m) > a(m) (23)

- aFgk (m) - b(m)] if gk(m) < b(m)

The unspecified positive constant a in eqn. 23 must be sufficiently

small to ensure a stable iterative process. If a solution is feasible

6
then to guarantee convergence it has been proved, for a similar

iterative scheme, that a must be equal to or less than half the

reciprocal of the norm of H.

In the special case where the envelope is collapsed, that is

a(m) = g(m) = b(m) for m = 1, 2, 3, • . M, iteration is not possible

and the appropriate solution is the least-square-error solution f.

If, on the other hand, [a(m) + b(m)]/2 = g(m) and a(m) - b(m) - 2C

for m - 1, 2, 3, . . . M where C is the minimax error, then the

envelope-constrained design should iterate the tap weights from their

least-square-error values to the minimax-error values. In this sense,

the envelope-constrained algorithm relates the least-square design

to the minimax design.

V-11
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5. Summary and Conclusions. When a finite-length transversal filter

is used as an equalizer for a discrete-time system generally it is only

7
possible to equalize the system approximately. Three different

algorithms have been presented to compute the tap weights of the

filter subject to different error criteria and constraints. Each of

these design algorithms was presented in matrix form suitable for

digital computation. While the least-square-error design is fast, it

may result in large, unconstrained equalization (deconvolution) errors.

The minimax design provides optimum control of individual deconvolution

errors. The envelope-constrained algorithm is an intermediate design

which offers greater individual error control at the expense of larger

mean-square error. For practical equalizer design, it is probably

worthwhile to evaluate all three designs and then select the one that

provides the most suitable approximate equalization.
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ABSTRACT

The time-domain response of a linear system in cascade with a

filter is determined by the convolution of their respective impulse

responses. Thus, if the system to be equalized is causal with impulse

response h(t), and there is a particular desired response g(t), then

the filter's impulse response f(t) must satisfy,

tf(x)h(-x)dX 
= g(t). (i)

0

Since the unknown filter response appears under the integral sign,

(1) is an integral equation for f(t). The solution of (1) requires

that an inverse convolution or deconvolution be performed to find

f(t) when h(t) and g(t) are specified.

Deconvolution is accomplished by direct solution of the

timc-domain convolutional integral equation (1). Previous solutions

to this integral equation have been found by the method of colocation,

or by minimizing the square of the solution error, or by using

envelope-constrained procedures. The proposed minimax or Chebyshev

solution minimizes the maximum solution error and, thereby, provides

a means to uniformly control deconvolution errors.

The minimax solution is found using an iterative procedure

known as the !second algorithm of R.mez.
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1. INTRODUCTION

1.1 Equalization

Equalization is a practical and important problem in communica-

tion systems engineering. The purpose of equalization is to compensate

for the linear distortions an electrical signal undergoes when passed

through a linear system or communication channel. This report will

briefly describe current time-domain equalization techniques, and then

present a new approach to the problem called minimax time-domain

deconvolution.

Assume that the system or channel to be equalized has impulse

response h(t) and that after equalization the desired impulse response

is g(t). Equalization can be accomplished using a filter with impulse

response f(t) in cascade with h(t) as shown in Fig. 1.1.

h(t) - --- f t b, g(t)=h(t)*f (t)

SYSTEM FILTER

Figure 1.1 Equalization Scheme
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From linear system theory the combined response g(t) is given

by the following convolutional integral.

g(t) = h(x)f(t-x)dx = h(t)*f(t) (1.1)
f
0

The integral in (1.1) is evaluated between zero and t because h(t) and

f(t) are assumed to be causal.

Mathematically, the continuous functions on an interval [a,b]

represent an abstract vector space and the operator h*(.), representing

convolution, is a linear transformation on the space of continuous

functions. Equation (1.1) can be viewed as a linear transformation

from the space of filter responses f(t) to the space of desired

responses g(t) as shown in Fig. 1.2.

DOMAIN OF TRANSFORMATION RANGE OF TRANSFORMATION

Figure 1.2 Convolutional Transformation

Although [a,bj could be (- , in practice this interval is finite.

In Fig. 1.2 there is a particular vector g(t) in the range

which is the most desirable response. The process of searching for the

appropriate vector f(t) in the domain to satisfy (1.1) is known as
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deconvolution or inverse-convolution and is an important, contemporary

engineering problem. Thus, equalization becomes a deconvolution

problem.

1.2 Transversal Filters

This report will not concern itself with the space of all

possible filter functions f(t), only with a particular class of filters

known as transversal filters or tapped delay lines. A transversal

filter is composed of N serial delay sections whose outputs are weighted

by scalar multipliers (tap-weights). All these delayed and weighted

signals are then added together to produce the filter output. Figure 1.3

shows a block diagram of a transversal filter.

DELAYS

INPUN

OUTPUTS

SUl ItER
Figure 1.3 Block Iiarmo Transversal Filter
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One mathematical representation of the impulse response for a

transversal filter is a series of N contiguous rectangular pulses of

heights f and of width T. However, an alternate form which greatlyn

simplifies the following discussion is the Dirac Comb,

N
f(t) Z f 6(t-nT) (1.2)

n=l n

where the f are the filter tap weights and 6(t) is the unit impulse
n

function.

Substituting the Dirac Comb representation (1.2) into (1.1)

and integrating yields the summation,

N
g(t) = f h(t-nT) (1.3)

n=ln

for which h(t) is a given system or channel impulse response and the

f are variable scalar coefficients. The deconvolution problem isn

concerned with adjusting the N tap weights fn to force equality in

(1.3).

1.3 Approximate Solutions to Deconvolution Problems

The linear transformation described in (1.1) is well known

in mathematical and physical sciences as an integral transformation.

Finding the vector f(t) which satisfies the transformation for a

particular g(t) is often difficult or impossible. The difficulties

are present because often the image space of the transformation is

smaller than the range space. This means that as the transformation

operates on each vector f(t) in the domain space, the set of vectors
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g(t) produced by the transformation is only a subset of the set of all

possible vectors (see Fig. 1.4).

TRASFRMAIO g g(t

f~)SUBSPACE 
/ /

SPANNED BY W

SPACE OF ALL TRANSFORMATION A - g(tI

POSSIBLE TRANSVERSAL
FILTER FUNCTIONS

SPACE OF ALL POSSIBLE

DESIRED FUNCTIONS

Figure 1.4 Approximation Problem in Deconvolution

If a particular desired response gD(t) is not mapped by the

transformation as it ranges over a11 possible filter functions (see

Fig. 1.4) then it is desirable to find a vector gA(t) in the image

space which is in some way close to gD(t). Thus, gAt) is an

approximation to gD(t) and there exists an f(t) in the domain which

is mapped to gA(t) by the transformation h*(.).

The equality stated by (1.3) is satisfied only if the choice

of g(t) can be written as a linear combination of the h(t-nT).

Deconvolving (1.3) to determine the values of the N tap weights fn

is straightforward only when g(t) lies in the span of the N time

shifted functions h(t-nT). This report will investigate possible

approximate solutions for the more general case when g(t) is not

spanned by the right-hand side of (1.3).
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1.4 Approximation Theory

Referring to Fig. 1.4 it is desired to pick an approximate vector

gA(t) so that the distance between it and the desired vector gD(t) is

small. To determine a best approximation it is first necessary to define

a measure of closeness between vectors of an abstract vector space. For

example, it is not clear what the distance between the continuous

functions cos(t) and sin(t) is on the interval [0, 2Tr].

Intuitively, a distance operator d(.,.) on pairs of vectors

must have certain properties. The operator assigns a real number to the

vector pair such that the distance between the two vectors is greater

than zero unless the two vectors are equal. If the vectors are equal,

then the operator assigns zero to be the distance. Furthermore, the

distance operator must be independent of direction and obey the triangle

inequality.

Summarizing for the vectors x, y, z

d(x,y) > 0 , x y

d(x,x) = 0
(1.4)

d(x,y) = d(y,x)

d(x,z) < d(x,y) + d(y,z)

A well-known distance operator on the real numbers is the

absolute value function which obeys the properties of (1.4) for any real

numbers x,y,z. For abstract vector snaces a general class of operators

called norms have the properties of a distance operator. A norm assigns

a real number to a vector ;and is d!-noted by j . norm has the
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following properties for any vectors x, y

i1xil = 0 , x = 0

I1xII > 0 , x #o

(1.5)
llaxll = lalixl , a R

l yx+yl ! lixil + Ilyll

It can easily be shown that IIx-yll is a distance operator on the pair

of vectors x, y.

Referring to Fig. 1.4 and using the norm as the measure of

distance, it is desired to minimize the distance between the desired

response gD(t) and the approximate response gA(t). For an interval

[a,b] this procedure is represented

min 11gD(t ) - gA(t) l1 (1.6)

and is determined by examining (1.6) for all possible gA(t).

Since gA(t) can be represented as a linear combination of the N

functions h(t-nT) (1.6) becomes

N
min gD(t) - fnh(t-nT) II. (1.7)

n=l
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It is convenient to represent the arguments of (1.6) and (1.7) as an

error function

N
r(t) g(t) - ~ f nh(t-nT) (1.8)

n=l

where a best approximation is recognized when the norm of r(t) is

minimized. An important point is that r(t) is a function of the N tap

weights fn and that 1 r(t)JI will vary as fn vary.

A norm that is widely used as a distance measure in the

engineering sciences is the Euclidean norm. The Euclidean norm of a

vector (x,y) in the Cartesian plane is !x 2 + y2 and for two vectors,

v= (xlY I) and v2 = (x2,Y2) the norm of the difference is

22

I jvl-v 2J I = /x-. 2) (y1-y2) 19

Equation (1.9) can be generalized to an n-dimensional space R

For a vector x = (xl,... ,xn), x ERn

I xi X+* -+xn 2(1.10)

There is an analogous representation for the Euclidean norm operating

on the abstract vector space of continuous functions on an interval

[a,b]. For (t) continuous on [a,b]

Ik](t)HI a f b 2(t)dt (1.11)

a

and for , 1(t) and 4 2(t) continuous on [a,b]
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i W]€l~t - 02 (t ] = b-a [l - 2 (t)1 dt (1.12)

a

In electrical engineering (1.11) is the RMS (root mean square) value of

Using the Euclidean norm as defined in (1.12) it is now

possible to calculate a distance between sin(t) and cos(t), the functions

of the previous example,

I sin t - cos t : J(sint - cost)2dt 1. (1.13)

Note that the value of the norm in (1.13) is related to the area between

the curves sin(t) and cos(t) in the interval [0,27]. This is an

important characteristic of the Euclidean norm. Minimizing the

Euclidean norm is in essence minimizing the area between an approxima-

tion curve and the desired curve.

Minimization of the Euclidean norm is the approximation tech-

nique known as least squares. The characteristic feature of least

squares solutions is that the area between the desired curve and the

approximate curve is minimized. A significant drawback of the method

is that individual errors are not bounded. Often a least squares

solution has large deviations from the desired curve at certain points.

For example, the Gibb's phenomenon observed with finite Fourier series

solutions produces sharp spikes in the error curve at discontinuities

of the desired curve.

*
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One case where large deviations in the error curve are particu-

larly undesirable is in digital signal detection. Since the detection

scheme is often a simple level detector the presence of large deviations

in the approximation curve could result in erroneous detection of

information during transmission.

An approach to limiting unbounded errors in the least squares

approximation scheme has been explored in the literature. The method

is called envelope-constrained deconvolution and it is an iterative

technique which is initiated by computing the least squares approximation.

In successive iterations, the largest errors are reduced, if possible,

until they are bounded by an envelope defined around the desired curve

as in Fig. 1.5.

g(t)

DESIRED CURVE I/i\EVLP

Figure 1.5 Envelope Constrained Deconvolution

Pushing errors down In one place may push errors up in other places.

Generally, mean square error is greater when envelope constraints

are imposed to suppress large, individual errors. The envelope-.

constrained approximation is a practical approach to restricting the
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magnitude of the error. The difficulty is that it is not generally known

how narrow the envelope can be made, and there is an important question

of solution feasibility.

1.5 Minimax Approximation

Here, a different approach to the deconvolution problem is

proposed, namely, the minimax solution. The minimax solution is a best

bounded approximation and is derived as a characteristic of using the

Chebyshev norm as a distance measure instead of the Euclidean norm.

The Chebyshev norm of a vector x = (xI .... ,xn) which is a

member of Rn is

jjxjj = max I (1.14)
-i<nli

The-analogous representation of (1.14) for continuous functions on an

interval [a,b] is

I x(t)II ax kt)l (1.15)

where ¢(t) is a continuous function of [a,b]. The minimax approximation

comes from minimizing (1.14) or (1.15).

The remainder of this report deals with further discussion of

the mininax approximation and its applications to the design of trans-

versal filter equalizers. Future reference to the norm or the use of

the norm will imply the Chebyshev norm unless otherwise noted.
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2. MINIMAX APPROXIMATION OF OVERSPECIFIED SYSTEMS OF LINEAR EQUATIONS

2.1 Systems of Linear Equations

Equations (2.1) and (2.2) are equivalent representations of a

system of M linear equations in N unknowns. The a and b are constants

and the x are the N unknowns.

N
I a x b m ,....M (2.1)

n=1 mn n m

a 1 1  a12 a. 1iN 1 b1

a21 a22 .•. a2 N X 2 b2

(2.2)

aMi a,,2 ... M NbM

The matrix of coefficients A = [a] on the left-hand side of

(2.2) is a linear transformation on the N-dimensional vectors

x = (xI , ... , xN), xCRn  to the M-dimensional vectors y = (ylp ... I YM) '

yE Rm . The vector b = (bl, ..., bM) on the right-hand side of (2.2) is

a constant vector for which it is desired to find the vector x which

under the transformation A maps to b:

Ax - b. (2.3)

Equation (2.3) is equivalent to (2.2).
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The existence and the number of solutions to (2.3) depends upon

the relationship between the number of equations and the number of

unknowns. Three possibilities exist, they are M<N, M=N, and M>N where M

is the number of equations and N is the number of unknowns.

For each case, the transformation A is mapping vectors from

N-dimensional space Rn to M-dimensional space Rm. In the case M<N the

transformation maps from a larger space to a smaller space and if the rows

of the matrix are linearly independent, then for any particular vector b

which belongs to Rm there are always infinitely many vectors xeRn such

that b is mapped by these vectors under the transformation. Referring to

Fig. 1.2 in Chapter 1, it is iLtuitively easy to see how a domain space

of larger dimension would fill up many times over a range space of

smaller dimension.

In the case M=N the transformation maps from a domain space of

equal dimension to the range space. From linear algebra it is known

that a system of linear equations with the same number of equations as

unknowns has a unique solution if the equations are linearly independent.

Finally, for the case M>N the transformation operates on a

domain space which is smaller than the range space. As in Fig. 1.4 of

Chapter 1 it can be seen that the transformation of the domain space does

not fill up the range space. That is, the transformation of the domain

is a subspace of the range. If the vector b in (2.1) - (2.3) lies in

the image space of the transformation A, then a solution exists.

Alternatively, if b does not lie in the image space of A then no exact

solution exists. Vhen an exact solution does not exist the best'

O'nan, H., Linear Alpebra, Harcourt Brace Jovanovich, 1976

- r-
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solution to (2.1) - (2.3) is found by selecting a vector which lies in

the image space of A and is a closst approximation to b.

When the number of equations in a linear system exceeds the number

of unknowns the system of equations is called overspecified. To find the

best approximation b to the vector b the Chebyshev norm will be used as a

distance measure. If E is the smallest distance that can be achieved

between the two vectors, then

= jib - bit (2.4)

Since b is mapped by the transformation A for some choice of x (2.4)

becomes

£ = min 1 b - Ax fl (2.5)

2.2 Solving Two Equations in One Unknown

Often only approximate solutions exist for overspecified

systems of linear equations. This section and the rest of this chapter

will be concerned with describing the characteristics of properties and

the minimax approximation.

The linear equation 2x = 1 has an exact algebraic solution,

namely, x = 1/2. The equation 2x = I is, of course, the most

elementary case of a linear system of equations. The solution to the

equation 2x = 1 can be found graphically by defining an error equation

r1(x) , such that r1(x) = 12x - 11. Plotting r1 (x) in Fig. 2.1 shows

that the solution to the equation 2% = I is found where r1(x) intersects
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the x-axis. That is, when the solution has been found the error is zero.

In the definition of rl(x) magnitude brackets are used since it is only

the magnitude of the error which is of concern.

r(x)

rl (x)

1/2 1 x

Figure 2.1 Solution of a Linear Equation in One Unknown

If a system of linear equations has more linearly independent

equations than unknowns, then an exact solution does not exist. This

is so, for example, with the system:

2x = 1

(1/3)x = 1 (2.6)

Each separate equation has a unique, exact solution (1/2 and 3

respectively) which can be found either algebraically or by the

graphical method of Fig. 2.1. However, there is no solution which

simultaneously satisfies both equations in (2.6) exactly.
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Figure 2.2 which is a plot of the error equations rl(x) and

r (x) associated with (2.6). An intuitive approximate solution to (2.6)
2

would be x 6/7.

r(x)

r (x) 12x-11

5
7

r 2(x)= I(l/3)x-11

6/7 1 2 3 x

Figure 2.2 Approximation to Two Linear Equations in One Unknown

Plugging the value x = 6/7 into the left-hand side of (2.6) yields

2x = 2(6/7) = 1 5~7

- 1 =11 (6/7) = 2/7 (2.7)

Note that the proposed solution x = 6/7 produces values in (2.7)

which are in error with respect to the right-hand side of (2.6) by

5/7 for each equation. Furthermore, the value x = 6/7 is where the

functions r (x) and r2(x ) intersect in Fig. 2.2 - (X)
2  .... 2(x)

also intersect at x=O, however, the error producedfor each equation

when zero is used in the left-hand side of (2.7) is rI  r2  1 which

is greater than the error produced by x 6/7).
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Now the minimax approximation to (2.6) will be computed. The

system of equations in (2.6) are of the form of (2.3) where the matrix

of coefficients is A = and the vector b . Using the norm

as the distance measure between the approximation Ax and the exact

solution b yields

Ilb-Ax 1=1I =I (2.8)

The minimax solution is found by minimizing the norm of (2.8). Using

the Chebyshev norm and denoting C as the minimax error,

m = i [ 11 = min Max {ll-2xl, IlxI%

= min max {rI(x), r2 (x) . (2.9)

The function max {r1 (x), r2(x)} in (2.9) is the crosshatched portion

of the graph in Fig. 2.2, and the minimum value of this function is

found when x = 6/7 as shown. The value of the error when x = 6/7 in

(2.9) is c = 5/7.

The intuitive approximation x = 6/7 was chosen because it was

the value which minimized the error for both equations in (2.6). Note

that moving either to the left or right of x = 6/7 in Fig. 2.2 increases

the error for one of the two error equations. The minimax approximation

is equivalent to the intuitive approximation, however, the procedure for

finding the minimax approximation can be formulated graphically.
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2.3 Solving M Equations in One Unknown

The graphical technique for finding the minimax approximation

to a set of two equations in one unknown can be expanded to a larger set

of equations. Consider, for example, the set of equations

2x = 1

1/3x = 1

5/2x = 5

5/8x = 5/2 (2.10)

The associated error equations are

r1 (x) 12x - 11

r2(x) = - 11

r3(x) -x 51

*4Cx) =5 5~ 1 (2.11)

Defining an error vector r(x) which has the four components

rl(x), r2 (x), r3 (x), r4 (x) it is possible to find the norm of r(x) from

the graph of the error functions r., r2, r3, r4. The norm of r(x) is

r~x) I l=max . 2' " '

.ind it is the crosshatched region of Fig. 2.3. From Fig. 2.3 it is easy

to pick out the minimum value of (2.12) and the value of x associated

to it. These values are min IIr(x)Ii = 5/3 and x = 4/3. Thus x - 4/3

's the minimax approximation to (2.10).



31.

Several characteristics of the graphical solution to (2.10) are

important and deserve further discussion. First, the minimax solution

x = 4/3 is found at the intersection of two of the error equations in

(2.11). Referring to Fig. 2.3 the particular equations are rl(x) =

i2x-lI and r4(x) x 5

r (x)

rix

3 r 3x)

5-

33

r4(x)

, r2(x)

1 4/3 2 3 4x

Figure 2.3 Approximation to Four Linear Equations in One Unknown

Note that all other error equations lie below the intersection of rlx)

and r4 (x) at x = 4/3. Thus, the maximum error has been minimized for

all four equations. If an approximation is chosen slightly to the left

or right of x = 4/3 then either the value of r increases or the value

of r4 increases. For x = 4/3 the error for each equation has been

bounded and minimized.

i , ., II
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Second, the solution occurs at the intersection of two lines which

are of opposite slope (see Fig. 2.3). This is a very important property

and is related to the fact that the Chebyshev norm of r(x) is a convex

function.

A convex function is defined as being a function (x) such that

for any three values of x, a<b<c, 4(b) < 06(a) + (1-0) (c) where e varies

from zero to one. Figure 2.4 shows a convex function.

(a)a)(-e¢

I I

a b c x

Figure 2.4 Properties of a Convex Function

A convex function always has a global minimum. Since the norm of r(x)

is a convex function (see Fig. 2.3) a global minimum can be found for

it, and the minimax approximation is guaranteed to exist.

A change in the sign of the slope of Ijr(x) H at the minimax

solution is an indication that a global minimum of the convex function

1lr(x)fI has been found. This can be seen by moving along 1lr(x)Ii in

Fig. 2.3. If a point of intersection is made'of two lines with the same

sign in slope, it indicates that 1jr(x) l can be further decreased.



33.

2.4 Characterization of the Minimax Approximation

The two properties described at the end of section 2.3 apply to

overspecified systems of linear equations with more than one unknown.

The generalization of these two properties specifies the minimax solution

and is known as the Characterization Theorem. In section 2.3 which

considered systems of linear equations in one unknown the minimax approx-

imations were found at the intersection of two of the equations.

Furthermore, the slopes of the two equations were of opposite sign.

In general, a system of M linear equations in N unknowns with

M>N, the minimax approximation is found at the intersection of some subset

of N+l of the M equations. Generalizing to N unknowns the property that

the minimax approximation is found at the intersection of two equations

which have slopes of opposite sign requires the introduction of the

concepts of a convex set and a convex hull

A convex set is a set of vectors such that for any two vectors

v and w contained in the set, the set also co.Zains all vectors of the

form 6v + (l-6)w where a is a scalar which varies from zero to one.

2Figure 2.5 shows some examples of convex and non-convex sets in R

CONVEX CONVEX NOT CONVEX

Figure 2.5 Convex Sets

Chiney, E.W., Introduction to Approximation Theory, McGraw Hill,
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The convex hull of a set S which itself is not convex is the smallest

set which contains S and is convex.

Now it is possible to generalize the fact that for systems with

one unknown the slopes are of opposite sign. If the mth row of the matrix

on the left-hand side of (2.2) is denoted A then to determine whether am

particular intersection of N+l error equations determines the minimax

approximation depends upon a property of the N+l associated rows of the
N

matrix A (i.e., associated by the expression r m(x) = bm -I amnxni

where A =(a ml.* a)). Denoting these N+l rows as A Am((al "'mN) " l'"' "m(N+I)

the condition states that the minimax approximation exists when zero

belongs to the convex hull of the set

ym() Am().' .,a m(N+l) Am(N+l) (2.12)

This is where F(1)... 'mNl are the signs + 1 determined by the
m~l)"**m(N+l)

equation

N
a = sgn {b -n Iamn xn }  (2.13)

forA a a

S(aml' ... amN)"

An equivalent statement of the condition that zero life in the

convex hull of (2.12) is that

0 = a -m(n) n(n)A in(n) (2.14)
n=l

See section A.2.



35.

where the 0 are scalar constants and
in(n)

N+l
>n >0 and n = (2.15)

n1l

In the case of one unknown the vectors A are one-dimensional
m

and thus belong to the real line R. Two of the vectors determine a mini-

max approximation only if their slopes are of opposite sign. For example,

the two vectors could be -5 and 3 which belong to R. From the definition

of the convex hull, it is true that zero is contained in the convex hull

of the set [-5, 3}

A proof of the facts that the minimax approximation is found in

some subset of N+l of the M error equations and that zero is contained

in the convex hull of the vectors Am(n) associated with the subset of

N+l error equations can be found in the appendix in sections A.1 and A.3.

3. USING A TRANSVERSAL FILTER AS A DISCRETE TIME-DOMAIN EQUALIZER

3.1 Convolution and the Transversal Filter

As discussed in section 1.2 a transversal filter has an impulse

response which can be represented as in (1.2)

N
f(t) I fn6(t-nT) (3.1)

n=l

Since the impulse response of the filter is finite in length, it is

known as a Finite Duration Impulse Response (FIR) filter. Referring

to Fig. 3.1 a transversal filter is composed of N sections each of which

consists of a delay T and a scalar multiplier f . An incoming signaln
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is first delayed and then multiplied by the scalar weight of the first

section. The next section further delays the unweighted signal and then

multiplies it by its own scalar weight. The signal traverses all N sections

of the filter and the output of the filter is a summation of the N delayed

and weighted versions of the input signal. The scalar weights are variable

and can be manipulated either electrically or mechanically.

DELAYS

~ TAI-WEIGHTS,_.

R" OUTPUT

Figure 3.1 Transversal Filter

If the input to a transversal filter is a discrete-time signal

x(t) fhlch only takes non-zero values at equally spaced discrete points

of time, then x(t) can be represented by x(nT) where T is the time

between'non-zero values of x(t) and n is an integer. The transversal

. - -. . .. .... .. . ciscrc -

signal with non-zero values f(nT).

The output of a transversal filter with input x(nT) is the

convolution sum of x(nT) and f(nT). Calling y(mT) the output of the
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filter for m an integer and assuming that the value of T is one yields

N
y(m) I  x(m-n)f(n). (3.2)

n=l

The convolution sum of (3.2) is from nl to n=N since f(n) is of finite

length N.

For a discrete-time system or communication channel which has

impulse response h(nT) = h(n) for T = 1 the combined impulse response of

h(n) in cascade with f(n) is the convolution sum of the two. If h(n)

is causal starting at n=l and of finite length L, then the combined

response g(m) is

N
g(m) = h(m-n+l)f(n) m=l,...,M (3.3)

n=l

where the length of g(m) is M = N+L+l. The operation of convolution sum

as in (3.2) and (3.3) is often represented by an asterisk so that (3.3)

becomes

g(n) = h(n)*f(n). (3.4)

3.2 Solving the Equalization Problem

The purpose of the discussion to this point has been to explain

how the transversal filter can act as an equalizer for a system or a

communication channel. A system or channel may have an undesirable

impulse response because in some way it introduces linear distortion

(i.e., alters the waveshape) to signals which traverse it. Equalization



38.

Ft is the process of changing the impulse response of the system or channel

through the addition of a transversal filter as an equalizer. Thus, the

combination of the system or channel with the filter has a more desirable

reponse.

If the system or channel response is measured and called h(n)

and the desired response is specified as g(m) then the problem is to

determine the f(n)'s which satisfy (3.3). Equation (3.3) is of the form

(2.1) in section 2.1 and can be written in the form of (2.2)

h(l) 0 0 ... 0

h(2) h(l) 0 . . . 0

h(N) h(N-l) h(N-2) .. h(l)

* .f(l) g(l).

f(2) g(2)

hCM-N) h(M-N-l) h(M-N-2) ... h(M-2N)

h(M-N+l) h(M-N) h(M-N-1) ... h(M-2N+l) . - (3.5)

0 h(M-N+l) h (M-N) . . . h (M--2N+2)

0 0 h(,N-N+l) . . . h(M-2N+3) f(N) g(M)

0 0 0 . . . h(M-.N+l)

If M is greater than N, which must be the case for L>l ,then (3.5) is

an overspecified system of linear equations where the unknowns are the

f(n).
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From the discussion in section 2.1 it is known that an over-

specified system of linear equations generally has no exact solution.

Thus, to solve the equalization problem it is desired to find a best

approximate solution to (3.5) which may be accomplished as described in

Chapter 2. ON"'
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4. DISCRETE TIME ALGORITHM

4.1 Ascent Algorithm for One Unknown

In the equalization problem a system impulse response h(n) is

given and a desired response g(n) is specified. The tap weights f(n) are

unknown. As pointed out in Chapter 3 the equalization problem generates

an overspecified system of linear equations in N unknowrv, the f(n) being

those unknowns. The algorithm desire' must seek the minimax approxima-

tion to the f(n).

The graphical technique of Chapter 2 for finding the minimax

approximation to an overspecified system of linear equations in one

unknown is not useful as an algorithm when the system has more than one

unknown. A generalized algorithm is needed which has the capacity to find

the minimax approximation to an overspecified system of linear equations

in N unknowns.

This chapter gives an intuitively plausible algorithm for the

case of an overspecified system in one unknown. Then the algorithm is

generalized to the case of N unknowns. The algorithm to be described

is known as the ascent algorithm. For the case of one unknown a

graphical description of the algorithm is based on properties of the

minimax approximation as described in the characterization theorem in

section 2.4.

Referring to Fig. 4.1, a particular iteration of the algorithm

has located a point x corresponding to the intersection of two lines.0

Each line represents an error equation (see section 2.3), and these lines

Cheney, E.W., Introduction to Anproximation Theory,
Y'cGraw Hill, 1966.
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have slopes of opposite sign satisfying the requirements of the char-

acterization theorem. The characterization theorem states that zero must

belong to the convex hull of the vectors which represent the slopes of

the lines. This condition is satisfied in the case of one unknown only

when the slopes of the two lines are of opposite sign.

If x corresponded to the global minimax solution then at the0

point x there would be no lines above the two lines whose intersection

defines x and the algorithm would terminate. This is true because theo

minimax approximation is found at the intersection of two lines which

belong to the function Ijr(x)iI = a, {r (x)} (see (2.12)). As in1 <m<M

Fig. 4.1, if it is not the case that x is the global minimax approximation

X xo

Figure 4.1 Ascent Algorithm for One Unknown

then a new line is cho- cn suich thst thp i'ltI'F -I- chc -n Tire

evaluated at x is equal to 1jr(x )11 . Now the -iu~ ~s chree Lines.

0 0

Out of the three lines the algorithm will choose two and delete the third.

The algorithm retains the new line and one of the old lines which has

slope of opposite sign to the new line.
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Where the two new lines intersect is the new point of the algorithm.

In Fig. 4.1 this point is xI. The discovery of xI defines the next iteration

of the algorithm and the algorithm proceeds with x1 as it did with x.

4.2 Generalization of the Ascent Algorithm to N Unknowns

There are three aspects of the ascent algorithm which require gen-

eralization to N unknowns. They are first, how to ensure that the convex

hull of the N+l error equations contains zero; second, how to arrive at

the intersection of N+l error equations; third, how to exchange one of

the N+l error equations for the particular equation that belongs to the

function Ir(x) I . The algorithm should solve all these problems effi-

ciently and should be able to determine when the solution has been found.

4.2.1 Forcing zero to belong to the convex hull

The overspecified system of linear equations representing the

equalization problem is of the form (2.2)

a11 a12 . aN x bl1

1 (4.1)
a21 a22 .a 2N X2 b2

,J .'

for M>N. For each row of the matrix in (4.1) there is an associated

error equation

N
rm(x) I b - 1 a x n (4.2)

n=1
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The algorithm begins by randomly choosing a subset of N+l of the M error

equations. To denote which subset of N+1 equations are being considered,

the error equations will be subscripted r(1)x) , r(2)(x) , . .

r (x).
m(N+l)

It is desired that zero belong to the convex hull of the set

{am()A M()am(2) A m(2)"... A m(N+l)Am(1l}where Am is the mth row vector

of the matrix in (4.1) and a are the signs + 1 defined by the equationm

N
Cm = sgn {b - I a mnx n. (4.3)

n=1

Am intuitive understanding of the purpose of the o, can be obtained by

referring to the case of an overspecified system in one unknown in

Fig. 2.3. Each error equation in Fig. 2.3 has two parts, one part is of

negative slope and the other part is of positive slope. It is important

to distinguish between these two portions of r (x). For example, them

intersection of the lines r (x) and r 2(x) in Fig. 2.3 occurs in two

places x = 0 and x = 6/7. At x - 0 the two lines have slopes of similar

sign and at x = 6/7 the lines have slopes of opposite sign. Thus, one

of the intersections constitutes a minimax approximation and the other

does not. The a are the devices which keep track of which of the twom

portions of an error equation the algorithm is using.

It is now possible to determine what values of the a willm

make zero belong to the convex hull of the set {0(1)Am(l),... ,M(N+l)

A m(N+)1. By (2.14) and (2.15) zero will belong to the convex hull of

this set when

N+1
0o e m(n)am(n)Am(n) (4.4)
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for
N+1

m (n)>0 and 0 m(n) = 1 (4.5)
n=l

By choosing

ore(n) sgn {6e(n) (4.6)

and recognizing that m(n)Gm(n) for e m(n)>0 is idential to 0m(n) (for

any positive or negative value of 0 m(n), (4.4) can be rewritten as

N+1 N+l
0 1 a A CY0 [a A 1(4.7)0 = [ m(n)Am(n)= "[m(n) m(n)] [m(n) M(n)](.)

n=l n=l

Recalling that A =(ala * amN) and that the sum of the

0( must equal 1 allows (4.7) to be rewritten in the form of a matrix
m (n)

transformation.

1 1i. . .1 er(l) 1

am(1)l am(2)1 . . . am(N+l)l m(2) 0

(4.8)II
am(l)N aM( 2)N . . . am(N+l)N em(N+I) 0

A solution for the em(n) exists if the square matrix in (4.8) has an

inverse. The inverse of the matrix in (4.8) is defined as the matrix
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such that

1 1 .. 1 d .
11 1N+1 1 .

a~) () (~~ 0 1 ... 0

aM(1)1 aM2) am d 4.1.1

a () m(2)N am . (N+1)N dN+11 N+lN+1 0 0 ... 1

(4.9)

If the inverse exists then (4.8) can be solved for the 8 ~n

a81 d 1
m~l 1 . .d N+1 11d

e m(2) .. 0

6m(N+l1 dNl d N1N+1 0 d N+1 1

As required in(.)the aMn= gemn and this choice of 0 m(n)

guarantees that zero belongs to the convex hull of the set

{amMl) m(l)" .'a M(N+l) Am(N+l)

4.2.2 Find-ing thec iz t:re.:t1Oa . .:!e \-- !rr'ir ecnatlons

Knowing the signs a it now is possible to find the minimax
m(n)

approximation for the subsystem of N+1 error equations. The only condi-

tion that needs to be satisfied is to determine where the set of N+1

error equations intersect. At thit point is where the minimax solution
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is found. Since the point being searched for occurs at the intersection

of the N+l error equations, the magnitudes of all the error equations are

equal at this point. If the vector y I= (y1, ... I N)is the point desired

and if E' is the magnitude of each error equation evaluated at y ,then

r mn(y )can be written

m ~ )mn)mn k ann)) =O n

~m~n r (~ b ~ ~ a() ~n)m~n) k=1(4.11)

m(n) =m~l), ... , m(n+l)

where A nn = (a 1 l.... . ma(n)N. Rearranging (4.11) yields

1 N
a m~) + X ~~ X=b m~) m(n)=m(l),. .. ,m(N+l) (4.12)

k=l

and this system of N+l equations in N+l unknowns can be represented in

matrix form:

0Tm(l) am(l)N ... aMN C b M

- . (4.13)

Cm(N+1) am(N+1)N a . r(N+1)N YN bm(N+1)
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The solution to y is found by inverting the matrix on the left-hand

side of (4.13).

1 M am(1) m(1 .. am(1)N bm() 11 1 N+1 bm(1)

YN (N+I) am(N+l)l a m(N+bl) bm(N+l) cN+lI... CN+lN+l bm (N+)

(4.14)

where the matrix on the right-hand side of (4.14) is the inverse matrix.
1.

Each component yn of the vector y is given by the sum,

N+1

Yn fI  CN+l k bm(k) (4.15)k=1

and the magnitude of the error is

N+l
lei = I I Clk bm(k)l (4.16)

k=l

1 .

It is important to note that y Is not necessarily the global

minimax approximation to the system of M equations in N unknowns.
1

However, y is the minimax solution to the subset of the N+l chosen

equations. At this point the algorithm tests whether y is the global

minimax solution.
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Since the system of linear equations has a total of M equations

in N unknowns, it may be determined whether y is a global minimax approx-

imation by evaluating each of the remaining M-(N+l) error equations at

1
the proposed solution y . If any member of the M-(N+I) equations has a

magnitude greater than E when evaluated at y then y is not the global
1

minimax approximation. Otherwise, y Is the solution and the algorithm

terminates.

4.2.3 Exchange Therorem
1

In the case where y is not the solution a new solution vector

must be computed for a different set of N+1 equations. As in the case of

the ascent algorithm for one unknown the algorithm will exchange one of

the vectors in the original set of N+l for the vector associated to the

error equation which evaluated at y has the greatest magnitude. Calling

the new vector Am(N+2) the problem is to decide which of the N+l vectors

should be replaced, and how this can be accomplished while simultaneously

satisfying the condition that zero belong to the convex hull of the new

set of N+l vectors.

It is known that zero lies in the convex hull of the original

set of N+l vectors tomM A M .. , am(N+l) A m(N+I) Therefore, by

(4.7)

N+I N+l
0= 1 e (n)Am(n) and I em(n) 1 (4.17)

n=l m n=l

The condition that zero lie in the convex hull of the Am(n) implies

that one of the N+l vectors, say A MQ, can be written as a linear

im j
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combination of the N other vectors:

m Nj) m(n)

A mO) A - -Snn m(n) (4.18)

n1fi mr(j)

n~j

If it is assumed that the N+1 vectors A span N space then it
m (n)

is possible to express the new vector Am(N+2) as a linear combination of

the A(n) for n = 1, ... , N+l and some scalar coefficients Xm(n)'

N+1
Anm(N+2) Xm(n) Am(n) (4.19)

Equation (4.19) can be rewritten

N+1
Am(N+ 2) =X m(j)Am(j) + y Xm(n) Am(n)m n=1

n#j

N: N+I

- e (n)-- Am(n + YXre(n) A m(n)
i fi mO) [ n l 1 reMO) n=l

n#j

N+1 e9~n
n-i m(n) MM m ) Am(n) (4.20)n=l MA~)-X~) Oj)

n~j

so that A (N+2) is now expressed as a linear combination of the Am(n)

for n = 1, ... , N+i excluding n=j. Rewriting (4.20)

O=Am(N+2) + YX MXm( n) Am(n) (4.21)
n=1 MM

nij
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it is seen that zero is expressed as a linear combination of N+1 vectors

and that the coefficient of each vector is positive if j is chosen suchOm(n)

that X m(n) n- >0, or equivalently X /0 >X /0
M(i) 6 MWj m(n) mMj MMj m(n) m(n)

for all n. This condition ensures that the vector replaced by Am(N+2)

is such that zero remains in the convex hull of the new N+l vectors.

The sign am(N+2) associated with vector Am(N+2) is simply the

sign of rm(N+ 2) (x) without magnitude brackets evaluated at y

N

am(N+2) = sgn {b M(N+2) I am(N+2 )kYkl (4.22)k=l

Since it is desired that zero belong to the convex hull of the vectors

modified by their signs, the modified coefficients Xm(n) and 0m(n) will

now be determined.

To find m(n), first recall that the matrix of the a m(n)AM(n)

times its inverse equals the identity matrix

Cl 1  "' CIN+I Cm(1) am(,) 1 am(1)N  1 0 ... 0

• . . 01 ... 0

NC1 '"N+ N+l am(N+l) am(N+l) I "'" am(N+1)N 0 ... 1

(4.23)

Thus,

N+l N+1
am(n) Cin = I and Cn am (n)k = 0 k=l,...,N (4.24)

n-I nil

which is exactly the condition that zero belong to the convex hull of
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the ao A where the am~ Cm are the modified

m (n) 
m(N+2)

the linear combination

N+1
Am(N+2) n X (n) AM(n) (.5

which is modified in matrix form as

(ym(N+2)' a (N+2)1l .. , m(N+2)N)

a M(1) a M(l)l ... ()

M(1)* .. mN+l))

am(N+1) m,(N+1)l m(N+1)N (4.26)

and therefore,

MM') *., sm(N+1))

C 11 ... CI l

(a (N+2)' ~a(N+2) J'**~ am (N+2)N)

CN+l 1 ~ N+l (4.27)
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Since

N+1
am(N+2)Am n 'M(n N+2 (;k m(n)A (n))

N+I
=nl( m(N+2iGm(nim(n) )(m(n)A(n' (4.28)

the modified Am(n) are the am(N+2)'M(n)Xm(n) and thus the modified ratios

to be computed are am(N+2) m(n) Xm(n) /m(n) Cln = am(N+2) Xm(n) CIn

The index which has the greatest such ratio is the index of the vector

which will be replaced.

Now a minimax approximation can be computed from the new set of

N+l equations and tested to determine whether it is the global minimax

approximation.

4.3 Manipulation of the Inverse Matrix

Two important topics remain. The first topic is concerned with

the nature of the inverse matrix in (4.14). The second topic deals with

convergence of the algorithm. Convergence of the algorithm will be

discussed in the next section.

The algorithm described to this point requires two matrix

inversionsfor the first iteration and one inversion for each successive

iteration. The first two inversions are to determine the signs am in

(4.10) and to find the intersection of the initial set of N+l error

equations (see (4.14)). For each successive iteration of the algorithm

a vector from the old set of N+I vectors is exchanged for a new vector

Am(N+2) (see section 4.2.3). The sign of the new vector is established,

and the only operation to be performed is the location of the point of

intersection of the set of N+I new error ,equations. As in (4.14) this
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can be accomplished through a matrix inversion of the new set of N+1

vectors and their associated signs.

An algorithm with many matrix inversions is undesirable and

should be avoided, if possible. The reasons for this are because matfices

can be difficult to invert numerically (due to round-off error, and dta

inaccuracies), matrix inversion algorithms are time-consuming.

Since only one row of the matrix is exchanged for each iteration

of the ascent algorithm it is possible to eliminate all of the matrix

inversions beyond the initial two. In general, if only the 8th row of a

square matrix (whose inverse is known) is altered, the changes in the

inverted matrix can be predicted without inverting the altered matrix:

Assume that an NxN matrix has rows A = (a ... a ) and itsn anl' ... nN) n t

inverse has columns Cn = (Cin"'- CNn). Furthermore, assume that the

matrix is altered by exchanging A, the matrix's 8th row, for the

N-vector v. The altered matrix will now have rows A and the invers-n

will have columns C n Note that the only difference between the matrix
n

A and A* is that the 8 th row of A* is A* = (v1,... IVN).

It now will be shown that the 8th column of the altered inverpe

C is

C8 C8/<v,C 8> (4 .29)

,
and that every other column of the altered inverse C is

n

C C - <V,C n>C n 1,...,N+I (1,.30)
n n 8

n8
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where <..,.> denotes the inner product. It turns out that the transformna-

tion in (4.29) and (4.30) is such that the matrix C is the inverse of the

matrix A (i.e., A C =C A =I, for I the identity raatrix).

There are four cases to take into consideration to prove (4.29)

and (4.30),

Proof:

Case Mi: for mi= n =8

<A PC *> = <v,C81<v,c >> <v,C >/<V, C> 1

Case (ii): for m 8&n#8

<A ,Cn > = <v,C n-<v, C >C >= <v,Cn > - <vn <,C >

= <vC n> -<v,C n>[<v,C a>/<v,c >] = 0

Case (iii): for m #8&n =8

<Am PC > = <Am PC/<V,C >> <Am C >/ V,C >

= Q/<vC > =0

Case (iv): forinm & n#

<A , C n> = <A , C n-<v,C n>C > = A , C n> -<v,C n><A mC >

= <A ,vC n>-<v,C n> [<A M C >/<v,C n>]

-<A ,C n> - <vC n>[0/<v,Cn >] = <A M C n> 6 n

Cases (i)-(iv) have shown that C is the inverse of the matrix A

In the algorithm, one of the rows of the matrix is replaced

with the vector v- (a (N+2) , am(N+ 2)1' ... a (N2 ) and the inner

products between v and the columins of the original inverse the

<V,C n> need to be computed to take advantage of the above proof.
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However, these inner products have previously been computed in the exchange

portion of the algorithm and are the X m(n) Specifically,

XC) = m(N 2 ) CNm(n)> (4.31)

(see (4.27)).

There is one condition which must be satisfied when manipulating

the inverse of the matrix in (4.14). If A is a singular matrix then the

inner product <v, C = 0 and the foregoing calculations are not valid.

4.4 Convergence

It remains to be shown that the ascent algorithm converges to a

solution. Since there are only a finite number of subsets of N+1 vectors

out of the M (1 N+l] = M ! /(N+I)!(M-N-I)! to be exact), the solution would

be guaranteed simply by testing all possible combinations. Since the

ascent algorithm does not check all possible combinations, it must be

shown that the algorithm does not cycle - i.e., alternate from the current

solution to a previous solution. This is shown by proving that the

magnitude of the minimax error grows larger for each iteration of the

algorithm.

Suppose that a certain step of the algorithm yields the set of

vectors {A1,... ,AN+l) and associated with this set is a computed solution

vector y and error c. Assume further that in the next step of the

algorithm that A1 will be replaced by AN+ 2 thus creating the new set of

vectors {A 2.. ,A N+2  Associated with the new set of vectors is a new

solution vector y and error £.
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From the choice of AN+2 it is known that,

IrN+2(y) >Ir2(Y)l and IrN+2(y')I=Ir2(Y')l . (4.32)

Thus y # y' or equivalently

y - y' # 0. (4.33)

For n =2, ..., N+1 it is true that

<a A ,y-y'> = [<°nA nY> - bn ] - [<anA ,y'> - b I
n n n n n n n n

= n r n(y) - an r n(y') -E' (4.34)

Thus by (4.33) and (4.34)

- E:' #0 (4.35)

For n = N+2,

<0N+2AN+2' Y-Y'> = [<ON+2AN+ 2'y> - bN+2]-[<IN+ 2AN+ 2 'y'> -bN+2]

ON+2rN+2(y) - aN+2rN+2 (Y')>E-E' (4.36)

If r--E'>O then it must be so chat <n A ny-y'>>0 for n = 2, ... , N+2 by

(4.34) and (4.36). However, it will now be shown that if c-c'>0 then

zero does not belong to the convex hull of the set {A2, ... , AN+2} which

contradicts the condition that the set have a minimax solution.
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If zero belongs to the convex hull cf the set {A2 ,...,AN+2
1

then there exist 8 such thatn

N+2
e > 0 and 8 1 (4.37)
n- n

and,

N+2
0 1 e a A (4.38)

n=2 n n n

(see (2.14)). Since y - y' is a constant vector then by (4.38).

N+2 N+2
e n <a A ,y-y'> = < Y n Oa ,y-y'> = 0. (4.39)

n2 n nn n2 nn

Equation (4.39) must be violated if <a A ,y-y'>>O for all n=2,... ,N+2nnl

since by (4.37) the n are all greater than or equal to zero. Thus itn

has been demonstrated that <a A ,y-y'> cannot be greater than zero forn n

all 0 and it may be concluded that the supposition c-c'>0 is false.

Due to (4.35) the only remaining possibility is that E'-E>0 or

equivalently C'>E. Thus, for each iteration of the algorithm the value

of the error must increase and this fact proves the algorithm's

effectiveness.

4.5 Restrictions on the Ascent Algorithm

There is an underlying assumption which makes the ascent algorithm

operational. It concerns the condition of the set of linear equations,

the extent to which these equations are linearly independent of each other.

For the algorithm to work, it is necessary to perform matrix inversions

and to manipulate matrix inverses. The algorithm proceeds on the
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assumption that for each matrix and inverse matrix it works with that

each one will be non-singular.

A non-singular matrix is a matrix whose determinant is non-zero

which is equivalent to the condition that the rows of the matrix be

linearly independent and that the columns of the matrix be linearly

independent. Therefore, if the algorithm is to operate on matrices and

their inverses, it must be guaranteed that the inverses exist. This is

equivalent to requiring that every subset of N+l from the set of M

vectors be linearly independent.

This condition is known as the Haar condition and the ascent

algorithm will, in general, only be successful if the rows of the matrix

in (2.2) satisfy the Haar condition.

5. USING THE TRANSVERSAL FILTER AS A CONTINUOUS TIME EQUALIZER

5.1 Statement of The Equalization Problem

When the system or channel to be equalized has a continuous

time impulse response h(t), then the convolution between h(t) and the

impulse response of a transversal filter f(t) is

N
g(t) = f h(t-nT) (5.1)

n= n

where g(t) is the desired equalized response, the f are the tap weights
n

of the filter, and T is a unit delay (see Fig. 1.3). For h(t) measured

aoun gkc) specified, the objective of equailzation is to soio ._ ) i-r

the value of the tap weights, the f . As previously discussed inn

section 1.3, (5.1) has no exact solution unless g(t) can be written as a

Cheney, E.W., Introduction to Approximation Theory, McGrar Hill,
1966.
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linear combination of the h(t-nT) for n=l,...,N. In general, the solutions

to (5.1) are approximate solutions and to gauge the quality of these solu-

tions an error function r(t) is established as in (1.8).

N
r(t) = g(t) - I fn h(t-nT). (5.2)

n=l -

Now, as discussed in section 1.4 the norm of r(t) will serve as a

measure of closeness between the approximation I fnh(t-nT) and the desired

function g(t). The Chebyshev norm will be the specific distance measure

explored here. The Chebyshev norm of r(t) defined on an interval [a,b]

is defined as

N N
IIr(t) I = 1jg(t) - I f h(t-nT)HI = max jg(t) - Y f nh(t-nT)I (5.3)

n= n a<t<b n=

In Chapter 2 the discussion centered on how to find the

Chebyshev norm of an overspecified system of linear equations and how to

minimize the norm of such a system. This process and its results are

known as the minimax approximation and it is desired to find a minimax

approximation to the problem of (5.1) by minimizing the norm of r(t)

as defined in (5.3).

The path to follow which leads to a minimax solution of (5.1)

is not readily apparent since the practical problem of finding the

minimum point of !Ir(t)Ii has only been discussed in terms of a system

of linear equjations. Section 5.2 will present a method for solving

(5.1) in the minimax sense.
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5.2 Linearization of the Continuous Error Function

The function r(t) can be seen as an error equation of a linear

equation in N unknowns if (5.1) is evaluated at a single point in time

t = tl,

N
g(t I  f n fh(t I- n T )  

(5.4)

n-l

Equation (5.4) is of the form of a linear equation

N
b= I ax (5.5)

n=ln n

where the values of b and a are determined by the functions g(t) and h(t)

n

evaluated at the points t1 and tl-nT. Specifically, b = g(tl) and

a = h(t -nT).n 1

Any interval [a,b] of the time axis has infinitely many points

belonging to it and each of these points may be evaluated in (5.4) to

generate a linear equation in N unknowns. Thus (5.1) can be considered

an overspecified system of linear equations where the number of equations

is infinite and the number of unknowns is N.

From section 2.4 it is known that the minimax approximation is

the minimum point of the function lirli and that the minimum point is

located by the intersection of some subset of N+l error equations from

the total set of M. The object of the next chapter will be to locate

the N+l points on the time axis which when used in (5.2) will generate

the minimax approximation to (5.1).
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6. REMEZ ALGORITHM

6.1 Process of the Remez Algorithm

As demonstrated in Chapter 2, it is always possible to find the

minimax approximation to a finite overspecified system of linear equations

in N unknowns. The minimax approximation is located by some subset of

N+1 equations and since there are only a finite number of subsets contain-

ing N+l equations the location of the minimax approximation is guaranteed

simply by testing all possible subsets.

When the set of equations is infinite, the number of subsets

containing N+1 equations is also infinite. Thus, it is not possible to

test all possible subsets of the system. What is sought is an algorithm

which sequentially examines subsets of N+l equations such that the

sequence converges to the optimum subset of N+l equations. One algorithm

which accomplishes this is called the Second Algorithm of Remez which is

analogous to the ascent algorithm described in Chapter 4.

In the time domain the error function r(t) (as defined in (5.2))

is of the form

N
r(t) = g(t) - f nh(t-nT) a<t<b (6.1)

n1n

for some interval [a,b]. As discussed in section 5.2, (6.1) is equivalent

to an overspecified system of linear equations (with an infinite number

of equations) in N unknowns.

The Remez algorithm begins by choosing an arbitrary subset of

N+l points from the time interval [a,b]. These N+1 points define a subset

of N+1 linear equations in N unknowns (see section 5.1) and it is possible

Cheney , L.W., Introduction to Approximation Theory, McGraw Hill,
I '6
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to find the minimax approximation to this subset of N+1 equations using

the ascent algorithm as described in Chapter 4.

The set of tap weights {fl ... tf } and the minimax error c is

computed from the subset of N+1 equations. For {ff...,fN} to be the

global minimax approximation to r(t) on [a,b], the magnitude of r(t) must

be bounded by C. This condition may be determined by inserting the

computed set {fl...,f N} into the continuous expression for r(t) in

(6.7). If Ir(t)j>E for any t belonging to [a,b] then the set {fl, ... f N

does not constitute the global minimax approximation to r(t).

The subset of N+l equations is then replaced by a different sub-

set of N+1 equations. This is accomplished by choosing a new set of N+I

points from the interval [a,b]. The procedure differs here from the

ascent algorithm as described in section 4.1 since more than one equation

is replaced for each iteration. Generally, all N+1 equations are replaced

by N+1 new equations in each iteration of the algorithm.

A graphical example of exchanging more than one equation per

iteration is shown in Fig. 6.1. The ascent algorithm described in

x2 x3  x I

Figure 6.1 Example of Multiple Exchanges in Ascent Algorithm
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Chapter 4 determines the global minimax approximation by computing a suc-

cession of solutions for subsets of N+1 equations. Since Fig. 6.1 is an

example of a system in one unknown the subsets will contain two lines and

the point x1 is a relative minimax solution since it is located at the

intersection of two lines which have slopes of opposite sign. Furthermore,

when evaluated at x1 there are two lines of greater magnitude than the

magnitude of the lines which intersect at xI.

The Ascent algorithm described in Chapter 4 proceeds by replacing

one of the two intersecting lines at x by the single line of greatest

magnitude evaluated at x . The intersection of the two new lines locates

a relative minimax solution at x2. Repeating this process once again

locates the global minimax solution x3.

At x in Fig. 6.1 if both intersecting lines which were used

in locating x1 are replaced in one iteration by the two lines of greatest

magnitude at xI the algorithm converges faster. The intersection of the

two new lines immediately locates the global minimax solution at x3 and

bypasses the examination of the relative minimax solution at x2.

In the Remez algorithm every set of N+1 equations is replaced

by a new set of N+1 equations. The algorithm sequentially computes sets

of tap weights (one set for each set of N+1 equations) which in the

limit converge to optimum values. Because the algorithm must eventually

terminate, the criterion for ending the algorithm depends on the iercent

difference between two consecutive computations of Hjr(t)JI. When the

percent difference is smaller than some specified percentage the

algorithm ends.
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6.2 Operational Details of the Remez Algorithm

The framework of the algorithm has been described, what remains

are the operational details. There are three parts of the Remez algorithm,

they are: (1) ariving at the relative minimax approximation for the N+l

equations generated by part (3); (2) evaluation of the merit of the approx-

imation in part (1); and (3) choosing a set of N+I points from the time

interval [a,b] for use in part (1).

The first set of N+l points can be arbitrary, and it is assumed

that the algorithm has a set of N+l points t such that a<tl<... <t <b.
n 1 N+l-

These points are used to generate an overspecified system of N+l linear

equations in N unknowns by evaluating (5.1) at each of the points tn

The minimax solution for f is found by the ascent algorithm
n

which was described in Chapter 4. The only essential difference is that

the portion of the ascent algorithm which performs manipulations on the

inverse matrix (see section 4.3) is invalid since more than one equation

is exchanged in each iteration of the algorithm. As in the first step of

the ascent algorithm a set of N+l signs a must be computed for the N+ln

equations and then the (N+l) x (N+l) matrix of signs and vector coeffi-

cients is inverted to find the minimax approximation to this particular

subset of N+l equations. An inversion of a matrix to compute the signs

an is unnecessary due to an alternation property of the minimaxn

approximation for continuous time signals. This property is described

by a theorem called the Alternation Theorem and the property is a

consequence of the requirement that zero belong to the convex hull of each

subset of N+l equations. Specifically, the alternation theorem states

that the minimax approximation generated by the set of points

Cheney, E.W., Introduction to Approximation Theory, McGraw Hill,

1966.
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a<t < ... <t <b has the property that r(t =-r(t for.n=l, ...,N.
1 Nr1tn) -r(n+ 1 )

Knowing that the magnitude of the error function will alternate in sign

at the N+l points t is equivalent to knowing a priori that the signs
n

a will alternate in sign since a = sgn {r(t )n n n

Each minimax approximation computed by the Remez algorithm is

for a subset of N+l equations generated by N+l points from the interval

[a,b]. For each iteration the algorithm tests how good an approximation

it has computed. Later in this chapter it will be proven that the Remez

algorithm achieves linear convergence. Using this knowledge it can be

shown that each successive tap-weight vector is closer to the optimum

tap-weight vector than the same vector from the previous iteration.

Termination of the algorithm can be controlled by monitoring the distance

between successive tap-weight vectors or by monitoring the percent dif-

ference between successive values of 1Ir(t)II.

If the algorithm has finished computing the minimax approxima-

tion to a particular subset of N+l equations and the algorithm does not

terminate, then it replaces the N+l points of the past iteration. The

description of how the algorithm makes this replacement refers to

Fig. 6.2.

The central idea in this part of the algorithm is to exchange

one subset of N+l points for another subset such that the error function

evaluated at the new subset of points has magnitudes unbounded by the

minimax error of the previous iteration. It is known that the previous

iteration generated a minimax approximation for the N+l points

a.tl<.. .<tN+lb. From the characteristics of the minimax approximation

See section A.4.
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it is known that Ir(tf )I r(t )I = . r(tN~) c, and that any

value of t in I a,b] such that Ir(.t )j> is an error unbounded by the

minlimax error.

r (t)

t t

It1  t 

2 z 
5z 2I

I zI

3 .

T 1 T2 T T 4T 
5

4
t 1 t 2t 3t 4t5

Figure 6.2 Details of Exchanging Subsets of N-1 Points in the Remez
Algorithm (for N+4).
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The alternation theorem requires r(t n -r(t n+l) for n=l,. ,N.

Thus, for each pair of indices (n, n+l), r(t) must have a root in the

interval [tn,tn]. For every interval [tn,tn+1  the algorithm then

locates this root and labels it zn+1 . The set of roots zn also contains

the endpoints a and b so that, as can bA seen in Fig. 6.2 abcissa number 2,

the N+2 roots are ordered a = z1<...<ZN+2 = b. For each pair of roots the

interval [z, zn+l] contains a single member of the set {tl,...,t N+1

Using the set of roots {z, z ... ZN+2} a test set of new points will

be generated for the next iteration of the algorithm. It is a test set

because the choices for the set may be modified before being passed to the

next iteration of the algorithm. The test set is found by choosing a

point Tn from each interval [z n, z n+lI for n = 1, ..., N+1 such that

Onr(Tn) is a maximum in the interval. The coefficient is the sign of the

error function evaluated at tn (i.e., an = sign {r(t)n )I

Abcissa number 3 in Fig. 6.2 shows the test set {TI, ... ,TN+I.

This set is modified only if the value t' for which Ir(t')l is a maximum

in the interval [a,b] is not a member of the set {TI,...,TN+}. This

condition is equivalent to H1r(t )11>Ir(Tn) I for all n. If t' does not

belong to the set {T.,... ,TN+I} it is desired to insert t' into the set

and to remove an appropriate T . This is done by first inserting t' inton

its appropriate ordered position within the set {TI,...,T N+I}. Then one

of the Tn will be adjacent to t' and will be such that sgn {r(T)1 =

sgn {r(t')} . If t' is less than TI or greater than TN+l then both T1

and T N+ are considered adjacent to t'. It is the Tn which satisfies

these conditions which is removed from the set. The remaining T and then

point t' constitute a new set of t (see Fig. 6.2 abcissa number 4).
n
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Figure 6.2 shows how the new set of tn replaces the old set. Note

that T5 is the adjacent point to t' which has the property sign r(Ts) =

sgn r(t') . The algorithm now can begin the next iteration by finding the

minimax solution to the set of N+l equations generated by the new set of

N+l points. Figure 6.3 shows a flow chart for the Remez algorithm.

6.3 Convergence of the Remez Algorithm

It remains to be shown that the Remez algorithm converges to a

best tap-weight vector fn *. A best tap-weight vector in the minimax sense

is one for which the associated minimax error E* bounds the magnitude of

the error function r(t) when r(t) is evaluated using fi*,

n

N
r(t) = g(t) - I f n*h(t-nT). (6.2)

n=ln

For each iteration of the algorithm there is an ordered set of

points

a<tl<... <tN+l<b (6.3)

for which a minimax approximation f and associated minimax error En

has been computed. Thus,

e = Ir(t1)1 = Ir(t 2 )I = ... Ir(tN+1)I. (6.4)

Furthermore, for the same iteration a new set of ordered points

at' < t...< t+l<b (6.5)

is chosen such that for each point tn', Jr(t)n ')I>E Let
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INPUT DATA

h(t) - system response

g(t) - equalized response

N - number of taps

T - tap spacing

[a,b] - solution interval

[Select N + 1 equally-spaced

points tm in interval [a,b).
Compute minimax solutionto

system of N + I equations corresponding

to choice of points t m in previous step.}

Evaluate continuous-time _error

function r(t) = g(t) f n fh(t-nT).

YES

Choose new set of N + 1

points t m in [a,b] correspondingI

to maximum values of jr(t)

OUTPUT DATA
N tap weights fn

Maximum error

Plots of: h(t), g(t), f(t)*h(t), r(t)

FIGURE 6.3 Flow Chart for the Remez Algor1th:3

Mi
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= Ir(t )1 , = maxlr(tn')1 (6.6)
1<n<N+l 1<n<N+l

So that by the theorem of de la Vallee Poussin and by (6.4) and (6.6)

E<c± <8. (6.7)

The proof of the fact that the Remez algorithm converges to a best tap-

weight vector f * is made by showing that both 8 and a converge uniformlyn

to C*.

Letting E', cx', and 8' denote the quantities defined in (6.4) and

(6.6) for the next iteration of the algorithm, the minimax approximation

to the set of equations generated by (6.5) is such that

N
(_l)n,, + I fk h(tn' -kT) = g(tn') (6.8)

k=l n

n = 1,...,N+l

The error £' can be solved for using Cramer's rule,

g(t') h(tl-T) ... h(t'l-NT) 1 h(t'l-T) ... h(tl-NT)

g(t2) h(t -T) ... h(t -NT) 1 h(t -T) ... h(t -NT)

g(tN+1 ) h(tNI-T) ... h (tN+-NT) (-l) N+ 2  h(tN+ -T) ... h (t'I-NT',

(6.9)

Cheney, E.W., Tntroduction to Approximation Theory, McGraw-Hill,

1966.
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Expanding each determinant along its first column and denoting the N+I

minors M for n = 1, ..., N+l, the expression for ' becomesn

~N~l n+ 1  /N+1 M
E' n  g(tn')(-l) n + 1 n1  Mn (6.10)

If g(t) = fnh(t-nT) then E' = 0 and so g(t) can be replaced by r(t) = g(t)

fnh(t-nT) in (6.10). Furthermore, since r(tn') = -r(t' n+1 ) and since

the minors M all have the same sign*, e' becomesn

N+1 N+l
g' = IMnljr(tn' I/ I IMnl(.1

n=1 n 1

Choosing 0n
N+I

en I i/ ZIMl (6.12)
i: k=1

then

e 1 and 0<e<1 (6.13)

for n = 1, ... , N+l. By (6.13)

= 0nr(tn )1> minlr(t )I = 1 . (6.14)

1<n<N+l

Knowing that E'>ct allows the inequality

N+1 N+1
UI -aci '-ai 1 0 nr(t 't) I-cs I en

n=1 n=l

N+l
n n n(jr(t n')I-a) (6.15)
n A l

See section A.4.
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- Ibecause 'z and Ze 1 by (6.7) and (6.13). Assuming that there exists

a e such that (10-1 min(e ) then by (6.6)

a> a'-0 -aa > 1 E*a (6.16)

Since C*< 6 (see (6.7)). Furthermore, by (6.16)

(E: -a') = (E*a)-(a'aU)_(:*_a) - (1-0) E*-aL) = (Es -a). (6.17)

Since it is known that 0<0<1, (6.16), gives a relationship for the distance

from E * to a for successive iterations. If the sequence of a's are labelled

a ()a (),.then

E: (k) <kC* a(1) Bek (6.18)

= (c'~a (1)(k)

For B )C-O a constant, the sequence a converges uniformly and

monotonically to E* from below.

Furthermore, since a' -a>(1-e)(a-a) by (6.16) for each term of

the sequence a(l), B(2)

(k) _ * < (k a(k) -1[ (k+1)_ (k)

<( -l (E*- (k) )<(1-0) 1 Bek= .e (6.19)

(k)
The sequence 6 also converges uniformly and monotonically to C

hoever, it does so from above. Thus, the algorithm converges to the best
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7. Numerical Examples and Suggested Future Research

7.1 Examples

Two examples are presented. The first example shows a Gaussian

function being equalized to sin(t)/t. Specifically,

h(t) = .337 exp(-t 2/27.6)

g(t) = sin(t)/t. (7.1)

Figure 7.1(a) shows a plot of h(t) and g(t) in the interval [-37,37].

Figures 7.1(b) and 7.1(c) show plots of g(t) and the equalized versions of

h(t), f 6*h for a six tap filter and f *h for an eight tap filter,'6 g

respectively. The tap spacings for f6 and f8 are T=7 and T=3T/4,

respectively.

The set of tap-weights computed for f6 and f8 are shown with their

associated minimax error in Table 7.1.

f 6 f 8

.208 E .021

f(l) 3.038 f(l) -13.637

f(2) -5.828 f(2) 39.696

f(3) 3.783 f(3) -52.256

f(4) 3.776 f(4) 25.830

f(5) -5.823 f(5) 25.811

f(6) 3.036 f(6) -52.241

f(7) 39.688

f(8) -13.635

TABLE 7.1 Tap-Weights and Error for f6 and f8

_6
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7. 1(a) &t-sn/ h(tj =0.337x

exp(-t 2127.6)

a

-3y: a ti~e-. 3:j

g =6 taps

7. 1(b)gI

7. 1(c) 9 N 8 caps

T=3"/4

f*h

0.

.2 ______________

7.1(d) 0 t6

Figure 7.1 Equalization of Gaussian Function to sin(t)/t.
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Note that the error for the eight tap filter is an order of magnitude

smaller than the error for the six tap filter. The number of iterations

to find f and f was five.6 8

Figure 7.1(d) shows the error functions r6 and r8 for both the six

and eight tap filters when r(t) is evaluated at the values of f6 and f8

shown in table 7.1.

The second example shows a raised cosine function being equalized

to a triangular pulse. In this case

2
h(t) = cos (t/2)

g(t) - 2-4[ti/fr. (7.2)

Figure 7.2(a) shows a plot of h(t) and g(t) in the interval [-7,7r].

Figures 7.2(b) and 7.2(c) show plots of g(t) and the equalized versions

of h(t), f8*h for an eight tap filter and f 2*h for a twelve tap filter,

respectively. The tap spacings for f8 and f12 are T = 7/4 and T = n/6,

respectively.

The set of tap weights computed for f8 and f12 are shown in

Table 7.2 along with their associated minimax errors. Again, note that

the error is substantially reduced for the longer length filter.
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g(t) =2-4ItIi2

7.()h(t) -cos 2(012)

w N - 8 taps

N8 taps

7. 2(b) T - v/4

0-

7. 2(c) N - 2 taps
ff 16

j12

0

7.2(d) 0 -)

Figure 7.2 Equalization of Raised Cosine Function to Triangular Pulse
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£.263 C .200

f(1) 4.281 f(1) 7.303

f(2) -12.982 f(2) -16.846

f(3) 15.664 fM) 15.261

f(4) -6.358 f(4) -14.068

f(5) -6.362 f(5) 18.958

f(6) 15.666 f(6) -9.907

f(7) -12.982 f(7) -9.914

f(8) 4.281 f(8) 18.962

f(9) -14.069

f(10) 15.262

f(1l) -16.846

f(12) 7.303

TABLE 7.2 Tap-Weights and Frror for f 8and f 1

Figure 7.2(d) shows the error functions r 8 and r 12 for the

eight and twieve tap filters when r(t) is evaluated at the values of

f 8and f 12shown in Table 7.2. The number of iterations needed to

find f8was four and the number needed for f 1 2 was five.
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7.2 Future Research

The algorithms discussed in this work are dependent upon the

Haar condition being satisfied (see section 4.5). This is not to imply

that the minimax solution does not exist when the Haar condition is not

satisfied, but the algorithm fails to find the solution if this is the

case. An algorithm which successfully operates independent of the Haar

condition is necessary before minimax equalizers can be universally

implemented.

Investigation of the stability of the Ascent and Remez algorithms

in the presence of various types of noise is a topic of interest. Noise

is a practical problem and a comparaitve study of the effects of noise

on minimax equalizers with respect to other types of equalizers is

important.

Finally, there seems to be a very strong potential for minimax

equalizers in adaptive equalization. Adaptive equalization is the

technique of varying the tap-weights of a transversal filter to compen-

sate for variation in the communication channel or system being equalized.

Since the Ascent algorithm only works with N+l pieces of data at a time,

the equalization of a system or channel impulse response is determined

by a particular subset of N+l pieces of the total input data. An adaptive

equalizer in the minimax sense promises to be very fast for the following

reasons: the input of new data never increases the difficulty of the

and new pieces of data do not necessarily change the current solution.

Only if the magnitude of the error curve associated with the new piece

of data has error unbounded by the current solution is it necessary to

recompute the solution.
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* I APPENDIX

A.1 Proof that the Convex Hull Contains Zero

For the overspecified system of linear equations as defined in

(2.2),

a 1 1  . a 1N xIbI

a21 . a 2N x2b2

(A.1)

each row of the matrix can be represented as an error function

N
r MCx) =Ib.- a mx n (A.2)

which can be written in inner product form,

r m(x) b I - < A~ ,x > (A.3)

-h'preA.= (a-,....... a ) -inex - x,......X-)

it will now be shown that the minimax solution, y, of the

overspecified system in (A.1) is such that the set of vectors

{A m r m(y) Hjr(x)II) . (A.4)

contains zero in its convex hull.
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The norm of r(x) is defined as

Itr(x)lI l max {rm(x) }  (A.5)
1<m<M

and an example of the norm of r(x) for the case of one unknown is shown as

the crosshatched portion of Fig. A.l.

r(x)

r 3(x)

II

y y+h x

Figure A.1 Proof of the Convex Hull Containing Zero

Assuming y is not the minimax solution it will be shown that zero is not

contained in the convex hull of the set in (A.4) which will constitute a

proof by asserting the contrapositive.

If y is not the solution (refer to Fig. A.l) then y is not the

minimum value of 1jr(x)I and for some vector h,

.. llr(y+h)ll < jjr(y)jj (A.6)
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For any error function r C x) which is part of the function r(x) at the

point y,

rm(y+h) < 11 r(y+h)If<Ilr(y)lI r m(Y) (A.7)

or by (A.3)

lb- <A m y+h>l < jbm - <A m y>l (A.8)

Rewriting (A.8)

Ib -<A my> - <A mh>1<1b -<A my>l (A.9)

and for (A.9) to be true

<A ,h> > 0. (A. 10)

However, for zero to belong to the convex hull of the A mbelonging to

the set in (A.4)

YOmA m (A.11)

where

0 < 6 <1 and =e 1 (A.12)

and by (A.11)

=Om< ,h <10 m A , h> < 0,h> =0 (A.13)

which is not possible If all the inner products (A ,h> are greater than zero

as in (A.10).
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Therefore, it has been shown by contradiction that if the set in

(A.4) contains zero in its convex hull, then y must be the minimum point

of the function Ijr(x)II.

A.2 Property of the Convex Hull of a Set

A set S is convex if for any two vectors y and z which belong to

S the linear combination

ey + (l-9)z , 0<9<1 (A.14)

also belongs to S. It will be shown that for any set of vectors

{ f ' f I which belong to a convex set S, the linear combination

N N
1 9 f for I e = I, 0<e <i (A.15)

Snn n '
n=l n=l

also belongs to S.

Rewriting (A.15)

N N-1
I a f = e f + 6NfN (A.16)
n1 nn n1 nn Nn=l n=l

and defining L,

N-1
L 1 0  (A.17)

n=l

equation (A.16) can be rewritten

N N-1 e f

n n f
= L Y '__n + 6 f (A.18)

n=l n=l NN
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Since

6 N-I 0
0 < n 1 , - 1 , L + : 1 (A.19)n1 L N

then by induction on N-1, (A.18), is proved to be a member of the set S.

A.3 Proof that the Minimax Solutions are Determined by Subsets of N+l
Elements

It will now be shown that the number of elements contained in the

set (A.4) need not be greater than N+l. From the discussion in section A.1

it is known that zero is contained in the convex hull of the set,

{Amlrm(Y) = llr(x) .} (A.20)

ThL proof will be made by showing that a vector Z which belongs to the

convex hull of a set S is expressible as a convex linear combination of

N+1 or fewer elements of S.

Thus, Z is expressed as

K
z 1 0 nv (A.21)

n=0 n

where

nn (A.22)
n=0

and the V belong to S. If K is minimal then each 0 in (A.22) is strictly

an
greater than zero.
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Defining a set of vectors Z,

Z =V -Z (A.23)
n n

for n =1, .. ,K the Z nare linearly dependent because

K K K K
1 = n 0 (V n-Z) I a0 V n- Z 0 Z-Z = 0 (A.24)
no n ~ nn n=o

Furthermore, if K>N then the Z nare linearly dependent since there are more

than N vectors in a space of dimension N.

If Z 0is removed from (A.24) then suppose a set of not all zero

coefficients aL exists such thatn

K
a aZ = 0 .(A.25)

n n

Defining a 0= 0, for all X

K K K
Y 0n +an )zn 1 n Zn + X I InZ=n0 + (O)X 0. (A.26)

n=0 n=O n0O

Now X is chosen so that JXi is a minimum and so that one of the coefficients

in (A.26) disappears, i.e.

0 + )Xa n= 0. (A.27)

The remaining coefficients in (A.26) are all non-negative since lXJ is a
minimum and at least one is non-zero since e0 +XAa = 60 > 0. Using this X

a term in (A.26) drops out. Replacing Z with (A.23) in (A.26) yieliA!
n

AhI
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K K
Xe ( O L )Z =~ (e +xac (v-Z) =0. (A. 28)

n= 0 n n n0n n n

Equation (A.28) implies

K K
Z I (e n+Xaz n I(e n+Xa n)V (A.29)
n_0 n=O

which may be written

K K
Z I (e (+Xa )v] 1/ [ Xn (A.30)

n= 0n n=0

which is valid since the coefficient of Z on the left-hand side of (A.29)

is non-zero.

Since one of the terms in (A.30) is zero Z has been expressed as a

sum of K terms instead of K+l terms as in (A.21). Thus the assumed minimality

of K has been shown false and it must be that K<N. For K<N the number of

terms in (A.21) is N+l or fewer.

A.4 Alternation Theorem

For the continuous equalization case the error function is defined

as in (5.2)

N
r(t) = g(t) - I f h(t-nT). (A.31)

n

For the norm of r(t) to be minimized it will be shown that for a certain

set of N+J. points t I < ... <t N~ from the interval [a,b] that

r(t)= r(t (A32
n n+l =jrtI.(.2
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For an interval [a,b] a set of N+1 distinct points t1<...<tN+1 is a

vector t

t = (tl, ... , tN+l) (A.33)

which has an associated vector t

n = (h(tn-T), ... , h(t -Nt (A.34)

where t in (A.34) is a component of the vector t in (A.33).n

The Haar condition (see section 4.5) states that every set of N

vectors of the form (A.34) must be linearly independent. This is the same

as requiring that the determinant

h(t1-T) ... h(t -NT)

h(t2-T) h(t2 -NT)

D[tI...,tN+1" (A.35)

h(t*+-T) ... h(t'+-NT)

be non-zero.

Since determinants are continuous functions (determinants are

defined by polynomial expansions) it can be shown that all determinants

Dt I .. , t N+l] < 0 < D [Ul, ..., u N+1 (A.36)

for u,<...<uN+l. Since the determinant is a continuous operator there
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exists a X such that O<X<l and

DXtI + (l-X)Ul,...,XtN+l + (l-)uN+l] = 0 (A.37)

If the determinant in (A.37) is zero then for some distinct m and n

Xtn + (l-X)u = Xt + (l-X)u m (A.38)

or

X(t n-t) = (l-)(u -u n ) (A.39)

From (A.39) t -t is of opposite sign from u -u which is a contradiction
n m n m

of the assumption that the t and u are similarly ordered.n n

For Ijr(t) JI to be a minimum it is known from sections A.1 and

A.3 that zero must belong to the convex hull of some subset of N+1 or fewer

vectors fa1 t ,....,aN+ltN+l Thus, from section A.2

N+l
e a t = 0 (A.40)

nln n n
n1l

for

N+l
O~ 11. (A.41)

n=

Rewriting (A.40)

N+l 8 a
n nn (A.42)

and solving (A.42) using Cramer's rule

-n n Dt 2,.--,tnt ,t n+1 9 .... N+Aa 0 - D ~ t 2 , .. t ; l ( A .4 3 )



- . .. S~ - -7-

92.

H Using the property of determinants which states that a column interchange

changes the sign of the determinant (A.43) becomes

Ona= _ DIt~*.t 1  t 1 **tq 1  (A.44)

and since both determinants in (A.44) are similarly ordered their signs

are the same. Thus,

sgn ( n (-)ni(A.45)

and because each 0 nis positive.

sgn an= (_1)n sgn a1  (A.46)

Equation (A.46) shows that the a must alternate in sign thus proving

(A. 32).
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A.5 Program Listings

The following is a listing of the ascent algorithm and the Remez

algorithm. The subroutines MINV and RIMI used in the algorithms are IBM

scientific subroutine programs and are not listed here. Both algorithms

are programed in Fortran IV on a DEC-10 computer.

A.5.1 Ascent Algorithm

C PROGRAM ASCENT
C

C PURPOSE
C TO OBTAIN THE BEST SET OF TAP-WEIGHTS, F(J),
C IN THE MINIMAX SENSE FOR AN OVERSPECIFIED

C SYSTEM OF LINEAR EQUATIONS GENERATED BY CON-
C VOLUTION SUM. HX.DAT AND GX.DAT ARE THE UN_
C EQUALIZED AND DESIRED RESPONSES, RESPECTIVELY,

C AND MUST BE SPECIFIED BY THE USER.
C
C USAGE

C .EX ASCENT, MINV
C
C DESCRIPTION OF PARAMETERS

C
C MINV -SUBROUTINE WHICH FINDS THE INVERSE OF

C AN (N X N) MATRIX PROVIDED THE MATRIX
C IS NON-SINGULAR.
C
C REMARKS
C THE PROCEDURE ASSUMES THAT THE ROWS OF THE
C MATRIX REPRESENTING THE OVERSPECIFIED SYSTEM
C OF LINEAR EQUATIONS SATISFY THE HAAR CONDITION.
C
C METHOD
C THE SOLUTION IS FOUND BY SUCCESSIVE SOLUTIONS
C TO SUBSYSTEMS OF N+l EQUATIONS. SINCE THERE
C ARE A FINITE NUMBER OF SUCH SUBSYSTEMS AND
C SINCE THE ERROR GROWS FOR EACH ITERATION THE
C ALGORITHM IS GUARANTEED TO FIND THE SOLUTION
C IN A FINITE NUMBER OF ITERATIONS.
C
CC INITIALIZATION

DIMENSION A(8,2),B(3,3),THETA(3),Y(3)
DIMENSION BR(8),R(8),AMBDA(3),JS(3),JL(3),M(3)
REAL MU
DATA MR,MC,ME/8,2,3/
CALL IFILE(21,'HX.DAT')
CALL IFILE(22,'GX.DAT')
DO 10 1-1,E

10 JS(I)-I
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C CREATE SYSTEM MATRIX
C FROM HX.DAT DATA FILE

J=l
DO 30 I=1,MR
IF(I.GT.MR-MC+1) GO TO 20
READ(2 1,1)A(I,J)
GO TO 30

20 A(I,J)=0.
30 CONTINUE

DO 50 I=I,MR
DO 50 J=2.,MC
K=I-J+1
IF(K.LE.O) TO TO 40
IF(K.GT.MR-MC+l) GO TO 40
A(I,J)=A(I-1 ,J-1)
GO TO 50

40 A(I,J)=O.
50 CONTINUE
C

C COMPUTE SIGNS WHICH FORCE ZERO
C TO LIE IN THE CONVEX HULL OF THE N+I VECTORS
C

55 READ z,1) 8R(I)
DO 60 I=1, ME

60 B(1,I)=1.
DO 70 K=2,ME
DO 70 L=1,ME
N=JS (L)

70 B(K,L)=A(NK-1)
IHOLD=ME
CALL MINV(B,IHOLD,DUM,JL,M)
DO 80 I=1,ME

80 THETA(I)=B(I,I)/ABS(B(I,1))

C
C INITIAL COMPUTATION OF MINIMAX
C SOLUTION FOR SUBSYSTEM OF N+I EQUATIONS
C

DO 90 I=1,ME
90 B(I,1)=THETA(I)

DO 100 K=2,ME
DO 100 L=1,ME
N=JS(L)

100 B(L,K)=A(N,K-1)
IHOLD=ME
CALL MINV(B,IHOLD,DUM,JL,M)
IF(ABS(DUM).EQ.0.) WRITE(5,2)

110 DO 120 K-1,ME
Y(K)=0.
DO 120 L=1,ME
N-JS(L)

120 Y(K)-Y(K)+B(K,L)*BR(N)
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, C

C EVALUATE M ERROR EQUATIONS AT
C REALTIVE MINIMAX SOLUTION
C

DO 140 K=1,MR
R(K)=O.
DO 130 L=2,ME

130 R(K)=R(K)+A(K,L-1)*Y(L)
140 R(K)=R(K)-BR(K)

C
C FIND THE ERROR EQUATION WITH MAXIMUM
C MAGNITUDE AND DENOTE ITS INDEX AS ALPHA
C

JALPHA=1
X=ABS(R(1))
DO 150 I=2,MR
IF(X.GT.ABS(R(I)) GO TO 150
x=ABS(R(I))
JALPHA=I

150 CONTINUE

C
C HAS A GLOBAL MINIMAX SOLUTION BEEN FOUND?
C

DO 160 I=1,ME
160 IF(JALPHA.EQ.JS(I)) GO TO 220

IF(X.LE.ABS(Y(1))) TO TO 220

C
C THE GLOBAL MINIMAX SOLUTION HAS NOT BEEN
C FOUND. EXPRESS THE VECTOR WITH INDEX JALPHA AS
C A LINEAR COMBINATION OF THE N+1 OLD VECTORS
C

MU=R(JALPHA)/X
DO 180 K=I,ME
AMBDA(K) = 0.
DO 170 L=1,MC

170 AMBDA(K)=AMBDA(K)+A(JALPHA,L)*B(L+I ,K)
180 AMBDA(K)=AMBDA(K)+MU*B(1,K)

C
C DETERMINE WHICH OF THE N+1 OLD VECTORS
C WILL BE EXCHANGED FOR VECTOR WITH INDEX JALPHA
C- ----------------------------------------------

Q=MU*AMBDA(1)/B (1,1)
NBETA-1
DO 190 I=2,ME
IF(Q.GT.MU*AMBDA(I)/B(1,I)) GO TO 190
Q-MU*AMBDA(I) /B(1,I)
NBETA-I

190 CONTINUE
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H ~c

C REVISE INVERSE MATRIX
C -

DO 200 K=1,ME
200 B(K,NBETA)=B(K,NBETA)/AMBDA(NBETA)

DO 210 J=I,ME
IF(J.EQ.NBETA) GO TO 210
DO 210 K=1,ME
B(K,J)=B(K,J)-AMBDA(J) *B(K,NBETA)

210 CONTINUE

C
C RE-INITIALIZE
C

JS (NBETA) =JALPHA
GO TO 110

C

C INPUT-OUTPUT
C

220 DO 230 I=I,ME
230 WRITE(5,3)Y(I)
I FORMAT(F)
2 FORMAT(IX,'DET OF MATRIX IS ZERO')
3 FORMAT(lX,1F1O.8)

C-

C END OF PROGRAM
C

CALL EXIT
END

A.5.2 Remez Algorithm

C
C
c PROGRAM REMEZ

C PURPOSE
C TO OBTAIN THE BEST SET OF TAP WEIGHTS, F(J), IN THE
C MINIMAX SENSE FOR THE APPROXIMATION G(X)=F(1)H(X-T)+
C ...+F(N)H(X-NT). THIS IS WHERE H(X) AND G(X)
C ARE DEFINED FUNCTIONS AND THE COEFFICIENTS
C F(1),... ,F(N) ARE TO BE DETERMINED. THE APPROXIMATION
C IS OVER A USER DEFINED INTERVAL [A,BI and T IS A USER
C DEFINED CONSTANT.
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C USAGE
C •EX REMEZ,GX,HX,RTMI,MINV
C
C DESCRIPTION OF PARAMETERS
C GX -SUBROUTINE WHICH RETURNS A SINGLE OUTPUT
C VALUE FOR A SINGLE INPUT VALUE ACCORDING
C TO THE FUNCTION G(X). THE FIRST LINE OF
C SUBROUTINE GX MUST BE:
C
C SUBROUTINE GX(Y,Z)
C
C WHERE Y IS THE INPUT VALUE AND Z IS THE
C RETURN VALUE.
C HX -SUBROUTINE WHICH RETURNS A SINGLE OUTPUT
C VALUE FOR A SINGLE INPUT VALUE ACCORDING
C TO THE FUNCTION H(X). THE FIRST LINE OF
C SUBROUTINE HX MUST BE:
C
C SUBROUTINE HX(Y,Z)
C
C WHERE Y IS THE INPUT VALUE AND Z IS THE
C RETURN VALUE.
C RTMI -SUBROUTINE WHICH WHEN GIVEN A FUNCTION R(X)
C FINDS A ROOT BETWEEN TWO VALUES OF THE
C FUNCTION R(XI) AND R(X2). R(XI) AND R(X2)
C MUST BE OF OPPOSITE SIGNS.
C MINV -SUBROUTINE WHICH TAKES A (N X N) MATRIX AND
C FINDS ITS INVERSE ASSUMING THAT THE DETERMINANT
C OF THE MATRIX IS NONZERO.
C
C REMARKS
C THE PROCEDURE ASSUMES THAT THE GENERATED FUNCTIONS
C H(X-T),...,H(X-NT) SATISFY THE HAAR CONDITION. THE
C CONDITION REQUIRES THAT EVERY SET OF N DISTINCT
C VECTORS H(X(I)-T),...,H(X(I)-NT) FOR I=l,...,N
C BE INDEPENDENT.
C
C SUBROUTINES USED
C GX AND HX ARE SUBROUTINES WHICH MUST BE WRITTEN
C BY THE USER. THEY ARE INPUT SUBROUTINES.
C RTMI AND MINV ARE STANDARD SCIENTIFIC SUBROUTINES
C WHICH CAN BE FOUND ON MOST COMPUTING SYSTEMS.
C
C METHOD
C SOLUTION OF APPROXIMATION FOR MINIMAX COEFFICIENTS
C IS ACCOMPLISHED BY AN ITERATIVE PROCESS KNOWN
C AS THE REMEZ ALGORITHM. THE ALGORITHM SUCCESSIVELY
C MINIMIZES THE LARGEST N+1 DISCRETE ERRORS ON THE
C INTERVAL [A,B] UNTIL IT CONVERGES TO A BEST SOL-
C TION. FOR REFERENCE SEE: INTRODUCTION TO
C APPROXIMATION THEORY, E.W. CHENEY, MCGRAW HILL 1966.
C

C
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C

C INITIALIZE PROGRAM

DIMENSION X(9),GC9),R(9),SIGMA(9),Z(1O),H(9,8)
COMMON TAU,N,F(9) ,ME,MC,MR

REAL NORM
K EXTERNAL RX

DATA N/81,MR,MCME/9,8,91
DATA EPS!. 001/ ,IENDI100/ ,STOP/0. /
CALL OFILE(21, 'GDAT.DAT')
CALL OFILE(22,'ADAT.DAT')
CALL OFILE(23, 'RDAT.DAT')
CALL OFILE(24,'HDAT.DAT')

C1' c INPUT PARAMETERS, CREATE INITIAL X-VECTOR, AND COMPUTE
C VALUES IN FUNCTION MATRICES

WRT(51
C

READ(5 ,2)A,B,TAU
SINT-(B-A)/(N+2)
DO 10 I=1,N+1
AI=I*SINT

10 X(I)=A+AI
20 WRITE(5,3)

WRITE(5,5)X
DO 30 11I,N+l
XI=XCI)
CALL GX(XI,GXI)
G(I)=GXI
DO 30 J=1,N
CNTRJ=(2*J-N-1)/2.
XS=XI-CNTRJ*TAU
CALL HX(XS,HXS)

30 H(I,J)=HXS
C
C COM~PUTE F-VECTOR AND THlE INCURRED ERRORS

C CALL CHEBY(G,id,F)

WRITE(5 ,4)
WRITEC5,5)F
DO 40 IL-1,N+l
XI=X(I)

40 R(I)=RX(XI)
WRITECS ,6)
WRITE(5 ,5)R

C
C HAS A SOLUTION BEEN FOUND?

TEST-1.-(STOP/F(1))
IF(ABS(TEST).LT. .001) GO TO 50
STOP=F(1)
G3 TO 70

50 TINT-(B-A)/50.
WRTTE(9 .5)
WRIT E(5 ,5)
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K WRITE(5,9)
WRITE(5,5)
DO 60 K=1,51
V=A+(K-1) *TINT
CALL GX(V,GV)
CALL HX(V,HTV)
RV=RX (V)
HVCGV-RV
WRITE(5,7)V,GV,HV,RV
WRITE(21,7)V,GV
WRITE(22 ,7)V,11V
WRITE(23,7)V,RV
WRITEC24 ,7)V,HTV

60 CONTINUE
GO TO 210

C
C LOCATE ZEROES BETWEEN ERROR VALUES
C

70 DO 100 I=1,N
XI =x(I)
XI? O=X (1+1)
HOLD=IEND
SAVE EPS

80 CALL RTMI(ZIPO,DUM,RX,XI,XIPO,EPS,IEND,IER)
IF(IER-1) 100,90,100

90 IEND=2*IEND
EPS=EPS*2.
IF(IER.EQ.2)WRITE(5,81)

81 FORMAT(1X,'ERROR')
GO TO 80

100 Z(I+1)=ZIPO
IEND'=HOLD
EPS= SAVE
Z(1)=A
Z(N+2)=B
WRITE(5,8)
WRITECS ,5)Z

C
C EDIT X=VECTOR
C

DO 110 I=1,N+1
XI= XCM
U =RX (XI)

110 SIGMA (I) =U/A.BS (U)
NORM'=0.
DO 130 I=1,N+1
ZI=Z(I)
ZIPO=Z(I+1)
STEP (ZIPO-ZI)/1000.
HOLD=O.
PMAX=ZI
DO 130 J=1,10
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T=ZI+J*STEP
VAL=RX(T)
SVAL=VAL*SIGMA(I)
IF(SVAL.LE.HOLD) GO TO 120

* HOLD=SVAL
PMAX=T

120 IF(ABS(VAL).LE.NORM) GO TO 130
Y=T
NORM=ABS (VAL)

130 X(I)=PMAX

C
C RE-EDIT X-VECTOR
C

DO 140 K=1,N+1
XK=X (K)
RXVAL=RX (XK)

140 IF(NORM.LE.ABS(RXVAL))K1-l
IF(K1.EQ.1) GO TO 20
X1=X(1)
IF(Y.GT.X1) GO TO 160
DO 150 K=2,N+1
J=N+3-K

150 X(J)=X(J-1)
X (1) =Y
GO TO 20

160 DO 170 I=1,N+1
IF(Y.LT.Z(I)) GO TO 190

17.0 IF(Y.Ll .. (I)) GO TO 200
DO 180 K=1,N

180 X(K)=X(K+l)
X(N+1)=Y
GO TO 20

190 X(I)=Y
GO TO 20

200 X(I-1)=Y
GO TO 20

C
C INPUT-OUTPUT
C

1 FORMAT(1X,'PLEASE INPUT A,B,TAU')
2 FORMAT(3F)
3 FORMAT(1X,'X-VECTOR:')
4 FORMAT(1X, 'F-VECTOR:')
5 FORMAT(1X,1OF1O.3)
6 FORM'AT(1X,'R(T) EVALUATED AT X:')
7 FORIIAT(lX,3Fl0.3,6X,1FlO.3)
8 FORMAT(lX,'Z-VECTOR:')
9 FORMAT(6X,'X G(X) H(X)*F(X) R(X)')

C
C END OF PROGRAM
C

210 CALL EXIT
END
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C --- - - - - - - - - - - - - - - - - - - - - - -

c COMPUTE THE ERROR FUNCTION: R=G-<H,F>

C

FUNCTION RX(XIN)
COMMON TAU,N,F(9)
XOUT=O.
DO 220 J=1,N

CNTRJ= (2*J-N-1)/2.
B =XIN-CNTRJ*TAU
CALL HX(B,C)

220 XOUT=XOUT+C*F(J+1)

CALL GX(XIN,D)
RX=D-XOUT
RETURN
END

C - - - - - - - - - - - - - - - - - - - - - - - -

C
C FIND THE MINIMAX SOLUTION TO SET OF N+1 LINEAR

C EQUATIONS IN N UNKNOWNS
C

SUBROUTINE CHEBY (BR ,A,Y)

DIMENSION A(9,8),B(9,9),THETA(9),Y(9),BR(9),JL(9),M(9)
COMMON TAU,N,F(9),ME,MC,MR
MO=0

230 DO 240 I=1,ME

240 B(1,1)=(-1)**(I+MO)
DO 250 K=2,ME
DO0 250 L=1,ME

250 B(L,K)=A(L,K-1)
IHOLD=ME
CALL MINV(B, IHOLD,DUM,JL,M)
DO 260 K=1,ME

Y(K)=O.
DO 260 L=1,ME

260 Y(K)=Y(K)+B(K,L)*BRCL)
IF(Y(l).GE.O.) GO TO 270

MO=1
GO TO 230

270 RETURN
END


